
15

Fully homomorphic encryption: Introduction and boot-

strapping

In today’s era of “cloud computing”, much of individual’s and
businesses’ data is stored and computed on by third parties such as
Google, Microsoft, Apple, Amazon, Facebook, Dropbox and many
others. Classically, cryptography provided solutions to protecting
data in motion from point A to point B. But these are not always
sufficient to protect data at rest and particularly data in use. For
example, suppose that Alice has some data x ∈ {0, 1}n (in modern
applications x would well be terabytes in length or larger) that she
wishes to store with the cloud service Bob, but is afraid that Bob will
be hacked, subpoenaed or simply does not completely trust Bob.

Encryption does not seem to immediately solve the problem. Alice
could store at Bob an encrypted version of the data and keep the
secret key for herself. But then she would be at a loss if she wanted
to do with the data anything more than retrieving particular blocks
of it. If she wanted to outsource computation to Bob as well, and
compute f (x) for some function f , then she would need to share the
secret key with Bob, thus defeating the purpose of encrypting the
data in the first place.

For example, after the computing systems of Office of Personell
Management (OPM) were discovered to be hacked in June of 2015,
revealing sensitive information, including fingerprints and all data
gathered during security clearance checks of up to 18 million people,
DHS assistant secretary for cybersecurity and communications Andy
Ozment said that encryption wouldn’t have helped preventing it
since “if an adversary has the credentials of a user on the network,
then they can access data even if it’s encrypted, just as the users on
the network have to access data”. So, can we encrypt data in a way

Compiled on 4.11.2018 13:14

https://www.lawfareblog.com/why-opm-hack-far-worse-you-imagine
https://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html
https://en.wikipedia.org/wiki/Data_at_rest
http://www.federaltimes.com/story/government/omr/opm-cyber-report/2015/06/19/opm-breach-encryption/28985237/
https://en.wikipedia.org/wiki/Data_in_use

250 an intensive introduction to cryptography

that still allows some access and computing on it?

Already in 1978, Rivest, Adleman and Dertouzos considered this
problem of a business that wishes to use a “commercial time-sharing
service” to store some sensitive data. They envisioned a potential
solution for this task which they called a privacy homomorphism.
This notion later became known as fully homomorphic encryption

(FHE) which is an encryption that allows a party (such as the cloud
provider) that does not know the secret key to modify a ciphertext c

encrypting x to a ciphertext c′ encrypting f (x) for every efficiently
computable f (). In particular in our scenario above (see Fig. 15.1),
such a scheme will allow Bob, given an encryption of x, to compute
the encryption of f (x) and send this ciphertext to Alice without ever
getting the secret key and so without ever learning anything about x

(or f (x) for that matter).

Figure 15.1: A fully homomorphic encryption can be used to store data on the cloud in
encrypted form, but still have the cloud provider be able to evaluate functions on the
data in encrypted form (without ever learning either the inputs or the outputs of the
function they evaluate).

Unlike the case of a trapdoor function, where it only took a year
for Diffie and Hellman’s challenge to be answered by RSA, in the
case of fully homomorphic encryption for more than 30 years cryp-
tographers had no constructions achieving this goal. In fact, some
people suspected that there is something inherently incompatible be-
tween the security of an encryption scheme and the ability of a user
to perform all these operations on ciphertexts. Stanford cryptogapher
Dan Boneh used to joke to incoming graduate students that he will
immediately sign the thesis of anyone who came up with a fully
homomorphic encryption. But he never expected that he will actually
encounter such a thesis, until in 2009, Boneh’s student Craig Gentry
released a paper doing just that. Gentry’s paper shook the world of
cryptography, and instigated a flurry of research results making his
scheme more efficient, reducing the assumptions it relied on, extend-
ing and applying it, and much more. In particular, Brakerski and
Vaikuntanathan managed to obtain a fully homomorphic encryption

http://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/RAD78.pdf
https://en.wikipedia.org/wiki/Time-sharing
https://crypto.stanford.edu/craig/

fully homomorphic encryption: introduction and bootstrapping 251

1 In 2012 the state of art on homomor-
phically evaluating AES was about
six orders of magnitude slower than
non-homomorphic AES computation. I
don’t know what’s the current record.

2 As we mentioned before, as a general
rule of thumb, the difference between
the ideal schemes and the one that we
describe is that in the ideal setting one
deals with structured matrices that have
a compact representation as a single
vector and also enable fast FFT-like
matrix-vector multiplication. This saves
a factor of about n in the storage and
computation requirements (where n is
the dimension of the subspace/lattice).
However, there can be some subtle
security implications for ideal lattices as
well, see e.g., here , here, here, and here.

scheme based only on the Learning with Error (LWE) assumption we
have seen before.

Although there is open source library, as well as other implementa-
tions, there is still much work to be done in order to turn FHE from
theory to practice. For a comparable level of security, the encryp-
tion and decryption operations of a fully homomorphic encryption
scheme are several orders of magnitude slower than a conventional
public key system, and (depending on its complexity) homomorphi-
cally evaluating a circuit can be significantly more taxing. However,
this is a fast evolving field, and already since 2009 significant opti-
mizations have been discovered that reduced the computational and
storage overhead by many orders of magnitudes. As in public key
encryption, one would imagine that for larger data one would use
a “hybrid” approach of combining FHE with symmetric encryption,
though one might need to come up with tailor-made symmetric
encryption schemes that can be efficiently evaluated.1

In this lecture and the next one we will focus on the fully homo-
morphic encryption schemes that are easiest to describe, rather than the
ones that are most efficient (though the efficient schemes share many
similarities with the ones we will talk about). As is generally the case
for lattice based encryption, the current most efficient schemes are
based on ideal lattices and on assumptions such as ring LWE or the
security of the NTRU cryptosystem.2

R Lesson from verifying computation To take the dis-
tance between theory and practice in perspective,
it might be useful to consider the case of verifying
computation. In the early 1990’s researchers (moti-
vated initially by zero knowledge proofs) came up
with the notion of probabilistically checkable proofs
(PCP’s) which could yield in principle extremely
succinct ways to check correctness of computation.

Probabilistically checkable proofs can be thought
of as “souped up” versions of NP completeness
reductions and like these reductions, have been
mostly used for negative results, especially since
the initial proofs were extremely complicated and
also included enormous hidden constants. However,
with time people have slowly understood these
better and made them more efficient (e.g., see this
survey) and it has now reached the point where
these results, are nearly practical (see also this)and
in fact these ideas underly at least one startup. Over-
all, constructions for verifying computation have
improved by at least 20 orders of magnitude over
the last two decades. (We will talk about some of

https://eprint.iacr.org/2012/099.pdf
https://eprint.iacr.org/2016/127
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2015/676
https://eprint.iacr.org/2016/139
http://m.cacm.acm.org/magazines/2015/2/182636-verifying-computations-without-reexecuting-them/fulltext
http://madhu.seas.harvard.edu/papers/2009/pcpcacm.pdf
http://m.cacm.acm.org/magazines/2015/2/182636-verifying-computations-without-reexecuting-them/fulltext
http://z.cash
http://cacm.acm.org/magazines/2016/2/197429-pinocchio/abstract
https://www.dcsec.uni-hannover.de/fileadmin/ful/mitarbeiter/brenner/wahc14_RC.pdf
http://madhu.seas.harvard.edu/papers/2009/pcpcacm.pdf
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2016/646
http://shaih.github.io/HElib/

252 an intensive introduction to cryptography

these constructions later in this course.) If progress
on fully homomorphic encryption follows a similar
trajectory, then we can expect the road to practical
utility to be very long, but there is hope that it’s not
a “bridge to nowhere”.

R Poor man’s FHE via hardware Since large scale fully
homomorphic encryption is still impractical, people
have been trying to achieve at least weaker secu-
rity goals using certain assumptions. In particular
Intel chips have so called “Secure enclaves” which
one can think of as a somewhat tamper-protected
region of the processor that is supposed to be out
of reach for the outside world. The idea is that a
cloud provider client would treat this enclave as a
trusted party that it can communicate with through
the cloud provider. The client can store their data on
the cloud encrypted with some key k, and then set
up a secure channel with the enclave using an au-
thenticated key exchange protocol, and send k over.
Then, when the client sends over a function f to the
cloud provider, the latter party can simulate FHE
by asking the enclave to compute the encryption
of f (x) given the encryption of x. In this solution
ultimately the private key does reside on the cloud
provider’s computers, and the client has to trust
the security of the enclave. In practice, this could
provide reasonable security against remote hackers,
but (unlike FHE) probably not against sophisticated
attackers (e.g., governments) that have physical
access to the server.

15.1 Defining fully homomorphic encryption

We start by defining partially homomorphic encryption. We focus
on encryption for single bits. This is without loss of generality for
CPA security (CCA security is anyway ruled out for homomorphic
encryption- can you see why?), though there are more efficient
constructions that encrypt several bits at a time.

Definition 15.1 — Partially Homomorphic Encryption. Let F = ∪Fℓ be a
class of functions where every f ∈ Fℓ maps {0, 1}ℓ to {0, 1}.

An F -homomorphic public key encryption scheme is a CPA secure
public key encryption scheme (G, E, D) such that there exists a
polynomial-time algorithm EVAL : {0, 1}∗ → {0, 1}∗ such that for
every (e, d) = G(1n), ℓ = poly(n), x1, . . . , xℓ ∈ {0, 1}, and f ∈ Fℓ of

https://goo.gl/HW4pPU

fully homomorphic encryption: introduction and bootstrapping 253

description size | f | at most poly(ℓ) it holds that:

• c = EVALe(f , Ee(x1), . . . , Ee(xℓ)) has length at most n

• Dd(c) = f (x1, . . . , xℓ).

P Please stop and verify you understand the defi-
nition. In particular you should understand why
some bound on the length of the output of EVAL
is needed to rule out trivial constructions that are
the analogous of the cloud provider sending over
to Alice the entire encrypted database every time
she wants to evaluate a function of it. By artificially
increasing the randomness for the key genera-
tion algorithm, this is equivalent to requiring that
|c| ≤ p(n) for some fixed polynomial p(·) that does
not grow with ℓ or | f |. You should also understand
the distinction between ciphertexts that are the
output of the encryption algorithm on the plaintext
b, and ciphertexts that decrypt to b, see Fig. 15.2.

A fully homomomorphic encryption is simply a partially homomor-
phic encryption scheme for the family F of all functions, where the
description of a function is as a circuit (say composed of NAND
gates, which are known to be a universal basis).

15.1.1 Another application: fully homomorphic encryption for

verifying computation

The canonical application of fully homomorphic encryption is for a
client to store encrypted data E(x) on a server, send a function f to
the server, and get back the encryption E(f (x)) of f (x). This ensures
that the server does not learn any information about x, but does not
ensure that it actually computes the correct function!

Here is a cute protocol to achieve the latter goal (due to Chung
Kalai and Vadhan). Curiously the protocol involves “doubly encrypt-
ing” the input, and homomorphically evaluating the EVAL function
itself.

• Assumptions: We assume that all functions f that the client will
be interested in can be described by a string of length n.

• Preprocessing: The client generates a pair of keys (e, d). In the
initial stage the client computes the encrypted database c = Ee(x)

and sends c, e, e′ to the server. It also computes c∗ = Ee(f ∗) for
some function f ∗ as well as C∗∗ = EVALe(eval, Ee(f ∗)‖c) for some

https://eprint.iacr.org/2010/241
https://eprint.iacr.org/2010/241
https://en.wikipedia.org/wiki/NAND_gate

254 an intensive introduction to cryptography

Figure 15.2: In a valid encryption scheme E, the set of ciphertexts c such that Dd(c) = b
is a superset of the set of ciphertexts c such that c = Ee(b; r) for some r ∈ {0, 1}t where
t is the number of random bits used by the encryption algorithm. Our definition of
partially homomorphic encryption scheme requires that for every f : {0, 1}ℓ → {0, 1}
in our family and x ∈ {0, 1}ℓ, if ci ∈ Ee(xi ; {0, 1}t) for i = 1..ℓ then EVAL(f , c1, . . . , cℓ)
is in the superset {c | Dd(c) = f (x)} of Ee(f (x); {0, 1}t). For example if we apply
EVAL to the OR function and ciphertexts c, c′ that were obtained as encryptions of
1 and 0 respectively, then the output is a ciphertext c′′ that would be decrypted to
OR(1, 0) = 1, even if c′′ is not in the smaller set of possible outputs of the encryption
algorithm on 1. This distinction between the smaller and larger set is the reason why
we cannot automatically apply the EVAL function to ciphertexts that are obtained from
the outputs of previous EVAL operations.

fully homomorphic encryption: introduction and bootstrapping 255

function f ∗ and keeps c∗, c∗∗ for herself, where eval(f , x) = f (x) is
the circuit evaluation function.

• Client query: To ask for an evaluation of f , the client generates
a new random FHE keypair (e′, d′), chooses b ←R {0, 1} and lets
cb = Ee′(Ee(f)) and c1−b = Ee′(c

∗). It sends the triple e′, c0, c1 to
the server.

• Server response: Given the queries c0, c1, the server defines the
function g : {0, 1}∗ → {0, 1}∗ where g(c) = EVALe(eval, c‖c) (for
the fixed c received) and computes c′0, c′1 where c′b = EVALe′(gb, cb).
(Please pause here and make sure you understand what this step
is doing! Note that we use here crucially the fact that EVAL itself
is a polynomial time computation.)

• Client check: Client checks whether Dd′(c
′
1−b) = c∗∗ and if so

accepts Dd(Dd′(c
′
b)) as the answer.

We claim that if the server cheats then the client will detect this
with probability 1/2− negl(n). Working this out is a great exercise.
The probability of detection can be amplified to 1− negl(n) using
appropriate repetition, see the paper for details.

15.2 Example: An XOR homomorphic encryption

It turns out that Regev’s LWE-based encryption LWEENC we saw
before is homomorphic with respect to the class of linear (mod 2)
functions. Let us recall the LWE assumption and the encryption
scheme based on it.

Definition 15.2 — LWE (simplified decision variant). Let q = q(n) be
some function mapping the natural numbers to primes. The q(n)-

decision learning with error (q(n)-dLWE) conjecture is the following:
for every m = poly(n) there is a distribution LWEq over pairs
(A, s) such that:

• A is an m× n matrix over Zq and s ∈ Zn
q satisfies s1 = ⌊ q

2⌋ and
|As|i ≤

√
q for every i ∈ {1, . . . , m}.

• The distribution A where (A, s) is sampled from LWEq is com-
putationally indistinguishable from the uniform distribution of
m× n matrices over Zq.

The LWE conjecture is that q(n)-dLWE holds for every q(n) that
is at most poly(n). This is not exactly the same phrasing we used
before, but can be shown to be essentially equivalent to it.

256 an intensive introduction to cryptography

P It is a good idea for you to pause here and try to
show the equivalence on your own.

The reason the two conjectures are equivalent are the following.
Before we phrased the conjecture as recovering s from a pair (A′, y)

where y = A′s′ + e and |ei| ≤ δq for every i. We then showed a
search to decision reduction (Theorem 11.1) demonstrating that this
is equivalent to the task of distinguishing between this case and the
case that y is a random vector. If we now let α = ⌊ q

2⌋ and β = α−1(

mod q), and consider the matrix A = (−βy|A′) and the column
vector s = (α

s′) we see that As = e. Note that if y is a random vector in
Zm

q then so is −βy and so the current form of the conjecture follows
from the previous one. (To reduce the number of free parameters, we
fixed δ to equal 1/

√
q; in this form the conjecture becomes stronger

as q grows.)

A linearly-homomorphic encryption scheme: We
can describe the encryption scheme LWEENC
presented in class as:
• Key generation: Choose (A, s) from LWEq

where m satisfies q1/4 ≫ m log q≫ n.
• To encrypt b ∈ {0, 1}, choose w ∈ {0, 1}m and

output w⊤A + (b, 0, . . . , 0)
• To decrypt c ∈ Zn

q , output 0 iff |〈c, s〉| ≤ q/10,
where for x ∈ Zq we defined |x| = min{x, q− x}.

The decryption algorithm recovers the origi-
nal plaintext since 〈c, s〉 = w⊤As + s1b and
|w⊤As| ≤ m

√
q ≪ q. It turns out that this scheme

is homomorphic with respect to the class of lin-

ear functions modulo 2. Specifically we make the
following claim:

Lemma 15.3 For every ℓ ≪ q1/4, there is an algorithm EVALℓ that
on input c1, . . . , cℓ encrypting via LWEENC bits b1, . . . , bℓ ∈ {0, 1},
outputs a ciphertext c encrypting b1 ⊕ · · · ⊕ bℓ.

P This claim is not hard to prove, but working it out
for yourself can be a good way to get more familiar-
ity with LWEENC and the kind of manipulations
we’ll be making time and again in the constructions
of many lattice based cryptographic primitives. Try
to show that c = c1 + · · · + cℓ (where addition
is done as vectors in Zq) will be the encryption
b1 ⊕ · · · ⊕ bℓ.

fully homomorphic encryption: introduction and bootstrapping 257

Proof of Lemma 15.3. The proof is quite simple. EVAL will simply add
the ciphertexts as vectors in Zq. If c = ∑ ci then

〈c, s〉 = ∑ bi⌊ q
2⌋+ ξ mod q (15.1)

where ξ ∈ Zq is a “noise term” such that |ξ| ≤ ℓm
√

q ≪ q. Since
|⌊ q

2⌋ −
q
2 | < 1, adding at most ℓ terms of this difference adds at most ℓ,

and so we can also write

〈c, s〉 = ⌊∑ bi
q
2⌋+ ξ ′ mod q (15.2)

for |ξ ′| ≤ ℓm
√

q + ℓ ≪ q. If ∑ bi is even then ∑ bi
q
2 is an integer mul-

tiple of q and hence in this case |〈c, s〉| ≪ q. If ∑ bi is odd ⌊∑ bi
q
2⌋ =

⌊q/2⌋ mod q and so in this case |〈c, s〉| = q/2± o(q) > q/10. �

Several other encryption schemes are also homomorphic with
respect to linear functions, and even before Gentry’s construction
people have managed to achieve homomorphism with respect to
slightly larger classes (e.g., quadratic functions by Boneh, Goh and
Nissim) but not significantly so.

15.2.1 Abstraction: A trapdoor pseudorandom generator.

It is instructive to consider the following abstraction (which we’ll use
in the next lecture) of the above encryption scheme as a trapdoor gen-

erator (see Fig. 15.3). On input 1n key generation algorithm outputs
a vector s ∈ Zm

q with s1 = ⌊ q
2⌋ and a probabilistic algorithm Gs such

that the following holds:

• Any polynomial number of samples from the distribution Gs(1n)

is computationally indistinguishable from independent samples
from the uniform distribution over Zn

q

• If c is output by Gs(1n) then |〈c, s〉| ≤ n
√

q.

Thus s can be thought of a “trapdoor” for the generator that
allows to distinguish between a random vector c ∈ Zn

q (that with
high probability would satisfy |〈c, s〉| ≥ q/10) and an output of the
generator. We use Gs to encrypt a bit b by letting c ←R Gs(1n) and
outputting c + (b, 0, . . . , 0)⊤. In the particular instantiation above we
obtain Gs by sampling the matrix A from the LWE assumption and
having Gs output w⊤A for a random w ∈ {0, 1}n, but we can ignore
this particular implementation detail in the forgoing.

Note that this trapdoor generator satisfies the following stronger
property: we can generate an alternative generator G′ such that the
description of G′ is indistinguishable from the description of Gs

258 an intensive introduction to cryptography

Figure 15.3: In a trapdoor generator, we have two ways to generate randomized algo-
rithms. That is, we have some algorithms GEN and GEN′ such that GEN outputs
a pair (Gs, s) and GEN′ outputs G′ with Gs, G′ being themselves algorithms (e.g.,
randomized circuits). The conditions we require are that (1) the descriptions of the
circuits Gs and G′ (considering them as distributions over strings) are computationally
indistinguishable and (2) the distribution G′(1n) is statistically indistinguishable from the
uniform distribution , (3) there is an efficient algorithm that given the secret “trapdoor”
s can distinguish the output of Gs from the uniform distribution. In particular (1),(2),
and (3) together imply that it is not feasible to exract s from the description of Gs.

3 The choice of 1/3 is arbitrary, and can
be amplified as needed.

but such that G′ actually does produce (up to exponentially small
statistical error) the uniform distribution over Zn

q . We can define
trapdoor generators formally as follows

Definition 15.4 — Trapdoor generators. A trapdoor generator is a pair of
randomized algorithms GEN, GEN′ that satisfy the following:

• On input 1n, GEN outputs a pair (Gs, s) where Gs is a string
describing a randomized circuit that itself takes 1n as input and
outputs a string of length t where t = t(n) is some polynomial.

• On input 1n, GEN′ outputs G′ where G′ is a string describing a
randomized circuit that itself takes 1n as input.

• The distributions GEN(1n)1 (i.e., the first output of GEN(1n)

and GEN′(1n) are computationally indistinguishable

• With probability 1 − negl(n) over the choice of G′ output by
GEN′, the distribution G′(1n) is statistically indistinguishable (i.e.,
within negl(n) total variation distance) from Ut.

• There is an efficient algorithm T such that for every pair (Gs, s)

output by GEN, P[T(s, Gs(1n)) = 1] ≥ 1− negl(n) (where this
probability is over the internal randomness used by Gs on the
input 1n) but P[T(s, Ut) = 1] ≤ 1/3. 3

fully homomorphic encryption: introduction and bootstrapping 259

P This is not an easy definition to parse, but looking
at Fig. 15.3 can help. Make sure you understand
why LWEENC gives rise to a trapdoor generator
satisfying all the conditions of Definition 15.4.

Aside: trapdoor generators in real life: In the
above we use the notion of a “trapdoor” in the
pseudorandom generator as a mathematical ab-
straction, but generators with actual trapdoors have
arisen in practice. In 2007 the National Institute of
Standards (NIST) released standards for pseudo-
random generators. Pseudorandom generators are
the quintessential private key primitive, typically
built out of hash functions, block ciphers, and such
and so it was surprising that NIST included in the
list a pseudorandom generator based on public
key tools - the Dual EC DRBG generator based
on elliptic curve cryptography. This was already
strange but became even more worrying when
Microsoft researchers Dan Shumow and Niels
Ferguson showed that this generator could have a
trapdoor in the sense that it contained some hard-
wired constants that if generated in a particular
way, there would be some information that (just
like in Gs above) allows to distinguish the genera-
tor from random (see here for a 2007 blog post on
this issue). We learned more about this when leaks
from the Snowden document showed that the NSA
secretly paid 10 million dollars to RSA to make this
generator the default option in their Bsafe software.
You’d think that this generator is long dead but
it turns out to be the “gift that keeps on giving”.
In December of 2015, Juniper systems announced
that they have discovered a malicious code in their
system, dating back to at least 2012 (possibly 2008),
that would allow an attacker to surreptitiously
decrypt all VPN traffic through their firewalls. The
issue is that Juniper has been using the Dual EC
DRBG and someone has managed to replace the
constant they were using with another one, one
that they presumably knew the trapdoor for (see
here and here for more; of course unless you know
to check for this, it’s very hard by looking at the
code to see that one arbitrary looking constant
has been replaced by another). Apparently, even
though this is very surprising to many people in
law enforcement and government, inserting back
doors into cryptographic primitives might end up
making them less secure.

http://blog.cryptographyengineering.com/2015/12/on-juniper-backdoor.html
http://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/
https://goo.gl/X6pAXV
https://rpw.sh/blog/2015/12/21/the-backdoored-backdoor/
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html
http://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://rump2007.cr.yp.to/15-shumow.pdf

260 an intensive introduction to cryptography

4 The story is a bit more complex than
that. Frustratingly, the decryption cir-
cuit of Gentry’s basic scheme was just a
little bit too deep for the bootstrapping
theorem to apply. A lesser man, such as
yours truly, would at this point surmise
that fully homomprphic encryption
was just not meant to be, and perhaps
take up knitting or playing bridge as
an alternative hobby. However, Craig
persevered and managed to come up
with a way to “squash” the decryption
circuit so it can fit the bootstrapping
parameters. Follow up works, and
in particular the paper of Brakerski
and Vaikuntanathan, managed to get
schemes with much better relation
between the homomorphism depth and
decryption circuit, and hence avoid the
need for squashing and also improve
the security assumptions.

15.3 From linear homomorphism to full homomorphism

Gentry’s breakthrough had two components:

• First, he gave a scheme that is homomorphic with respect to arith-
metic circuits (involving not just addition but also multiplications)
of logarithmic depth.

• Second, he showed the amazing “bootstrapping theorem” that if
a scheme is homomorphic enough to evaluate its own decryption
circuit, then it can be turned into a fully homomorphic encryption
that can evaluate any function.

Combining these two insights led to his fully homomorphic en-
cryption.4

In this lecture we will focus on the second component - the boot-
strapping theorem. We will show a “partially homomorphic encryp-
tion” (based on a later work of Gentry, Sahai and Waters) that can fit
that theorem in the next lecture.

15.4 Bootstrapping: Fully Homomorphic “escape velocity”

The bootstrapping theorem is quite surprising. A priori you might
expect that given that a homomorphic encryption for linear func-
tions was not trivial to do, a homomorphic encryption for quadratics
would be harder, cubics even harder and so on and so forth. But it
turns out that there is some special degree t∗ such that if we obtain
homomorphic encryption for degree t∗ polynomials then we can
obtain fully homomorphic encryption that works for all functions.
(Specifically, if the decryption algorithm c 7→ Dd(c) is a degree t

polynomial, then homomorphically evaluating polynomials of degree
t∗ = 2t will be sufficient.) That is, it turns out that once an encryption
scheme is strong enough to homomorphically evaluate its own decryption

algorithm then we can use it to obtain a fully homomorphic encryp-
tion by “pulling itself up by its own bootstraps”. One analogy is that
at this point the encryption reaches “escape velocity” and we can
continue onwards evaluating gates in perpetuity.

We now show the bootstrapping theorem:

fully homomorphic encryption: introduction and bootstrapping 261

Figure 15.4: The “Bootstrapping Theorem” shows that once a partially homomorphic
encryption scheme is homomorphic with respect to a rich enough family of functions,
and specifically a family that contains its own decryption algorithm, then it can be
converted to a fully homomorphic encryption scheme that can be used to evaluate any
function.

5 You can ignore the condition of
circular security in a first read - we will
discuss it later.

Theorem 15.5 — Bootstrapping Theorem, Gentry 2009. Suppose that
(G, E, D) is a CPA circular 5 secure partially homomorphic encryp-
tion scheme for the family F and suppose that for every pair of
ciphertexts c, c′ the map d 7→ Dd(c) NAND Dd(c

′) is in F . Then
(G, E, D) can be turned a fully homomorphic encryption scheme.

15.4.1 Radioactive legos analogy

Here is one analogy for bootstrapping, inspired by Gentry’s survey.
Suppose that you need to construct some complicated object from a
highly toxic material (see Fig. 15.5). You are given a supply of sealed
bags that are flexible enough so you can manipulate the object from
outside the bag. However, each bag can only hold for 10 seconds of
such manipulations before it leaks. The idea is that if you can open
one bag inside another within 9 seconds then you can perform the
manipulations for arbitrary length. That is, if the object is in the ith

bag then you put this bag inside the i + 1st bag, spend 9 seconds on
opening the ith bag inside the i + 1st bag and then spend another
second of whatever manipulations you wanted to perform. We then

https://crypto.stanford.edu/craig/easy-fhe.pdf

262 an intensive introduction to cryptography

Figure 15.5: To build a castle from radioactive Lego bricks, which can be kept safe in
a special ziploc bag for 10 seconds, we can: 1) Place the bricks in a bag, and place the
bag inside an outer bag. 2) Manipulate the inner bag through the outer bag to remove
the bricks from it in 9 seconds, and spend 1 second putting one brick in place 3) Now
the outer bag has 9 seconds of life left, and we can put it inside a new bag and repeat
the process.

continue this process by putting the i + 1st bag inside the i + 2nd bag
and so on and so forth.

15.4.2 Proving the bootstrapping theorem

We now turn to the formal proof of Theorem 15.5

Proof. The idea behind the proof is simple but ingenious. Recall
that the NAND gate b, b′ 7→ ¬(b ∧ b′) is a universal gate that al-
lows us to compute any function f : {0, 1}n → {0, 1} that can
be efficiently computed. Thus, to obtain a fully homomorphic
encryption it suffices to obtain a function NANDEVAL such that
Dd(NANDEVAL(c, c′)) = Dd(c) NAND Dd(c

′). (Note that this is
stronger than the typical notion of homomorphic evaluation since we
require that NANDEVAL outputs an encryption of b NAND b′ when
given any pair of ciphertexts that decrypt to b and b′ respectively,
regardless whether these ciphertexts were produced by the encryp-
tion algorithm or by some other method, including the NANDEVAL

procedure itself.)

Thus to prove the theorem, we need to modify (G, E, D) into an
encryption scheme supporting the NANDEVAL operation. Our new
scheme will use the same encryption algorithms E and D but the

fully homomorphic encryption: introduction and bootstrapping 263

6 Without this assumption we can still
obtained a form of FHE known as a
leveled FHE where the size of the public
key grows with the depth of the circuit
to be evaluated. We can do this by
having ℓ public keys where ℓ is the
depth we want to evaluate, and encrypt
the private key of the ith key with
the i + 1st public key. However, since
circular security seems quite likely to
hold, we ignore this extra complication
in the rest of the discussion.

following modification G′ of the key generation algorithm: after run-
ning (d, e) = G(1n), we will append to the public key an encryption
c∗ = Ee(d) of the secret key. We have now defined the key generation,
encryption and decryption. CPA security follows from the security of
the original scheme, where by circular security we refer exactly to the
condition that the scheme is secure even if the adversary gets a single
encryption of the public key.6 This latter condition is not known to be
implied by standard CPA security but as far as we know is satisfied
by all natural public key encryptions, including the LWE-based ones
we will plug into this theorem later on.

So, now all that is left is to define the NANDEVAL operation.
On input two ciphertexts c and c′, we will construct the function
fc,c′ : {0, 1}n → {0, 1} (where n is the length of the secret key) such
that fc,c′(d) = Dd(c) NAND Dd(c

′). It would be useful to pause at
this point and make sure you understand what are the inputs to fc,c′ ,
what are “hardwired constants” and what is its output. The cipher-
texts c and c′ are simply treated as fixed strings and are not part of
the input to fc,c′ . Rather fc,c′ is a function (depending on the strings
c, c′) that maps the secret key into a bit. When running NANDEVAL

we of course do not know the secret key d, but we can still design a
circuit that computes this function fc,c′ . Now NANDEVAL(c, c′) will
simply be defined as EVAL(fc,c′ , c∗). Since c∗ = Ee(d), we get that

Dd(NANDEVAL(c, c′)) = Dd(EVAL(fc,c′ , c∗)) = fc,c′(d) = Dd(c) NAND Dd(c
′) .

(15.3)
Thus indeed we map any pair of ciphertexts c, c′ that decrypt to b, b′

into a ciphertext c′′ that decrypts to b NAND b′. This is all that we
needed to prove. �

P Don’t let the short proof fool you. This theorem is
quite deep and subtle, and requires some reading
and re-reading to truly “get” it.

https://en.wikipedia.org/wiki/Circuit_complexity

	Fully homomorphic encryption: Introduction and bootstrapping
	Defining fully homomorphic encryption
	Another application: fully homomorphic encryption for verifying computation

	Example: An XOR homomorphic encryption
	Abstraction: A trapdoor pseudorandom generator.

	From linear homomorphism to full homomorphism
	Bootstrapping: Fully Homomorphic ``escape velocity''
	Radioactive legos analogy
	Proving the bootstrapping theorem

