
13

Establishing secure connections over insecure channels

We’ve now compiled all the tools that are needed for the basic goal
of cryptography (which is still being subverted quite often) allowing
Alice and Bob to exchange messages assuring their integrity and
confidentiality over a channel that is observed or controlled by an
adversary. Our tools for achieving this goal are:

• Public key (aka assymetric) encryption schemes.

• Public key (aka assymetric) digital signatures schemes.

• Private key (aka symmetric) encryption schemes - block ciphers
and stream ciphers.

• Private key (aka symmetric) message authentication codes and
psedorandom functions.

• Hash functions that are used both as ways to compress messages
for authentication as well as key derivation and other tasks.

The notions of security we require from these building blocks can
vary as well. For encryption schemes we talk about CPA (chosen
plaintext attack) and CCA (chosen ciphertext attacks), for hash
functions we talk about collision-resistance, being used (combined
with keys) as pseudorandom functions, and then sometimes we
simply model those as random oracles. Also, all of those tools require
access to a source of randomness, and here we use hash functions as
well for entropy extraction.

13.1 Cryptography’s obsession with adjectives.

As we learn more and more cryptography we see more and more
adjectives, every notion seems to have modifiers such as “non mal-

Compiled on 4.11.2018 13:14

222 an intensive introduction to cryptography

leable”, “leakage-resilient”, “identity based”, “concurrently secure”,
“adaptive”, “non-interactive”, etc.. etc. . . . Indeed, this motivated a
parody web page of an automatic crypto paper title generator. Unlike
algorithms, where typically there are straightforward quantitative

tradeoffs (e.g., faster is better), in cryptography there are many quali-

tative ways protocols can vary based on the assumptions they operate
under and the notions of security they provide.

In particular, the following issues arise when considering the task
of securely transmitting information between two parties Alice and
Bob:

• Infrastructure/setup assumptions: What kind of setup can Alice
and Bob rely upon? For example in the TLS protocol, typically
Alice is a website and Bob is user; Using the infrastructure of cer-
tificate authorities, Bob has a trusted way to obtain Alice’s public

signature key, while Alice doesn’t know anything about Bob. But
there are many other variants as well. Alice and Bob could share
a (low entropy) password. One of them might have some hardware
token, or they might have a secure out of band channel (e.g., text
messages) to transmit a short amount of information. There are
even variants where the parties authenticate by something they
know, with one recent example being the notion of witness encryp-

tion (Garg, Gentry, Sahai, and Waters) where one can encrypt
information in a “digital time capsule” to be opened by anyone
who, for example, finds a proof of the Reimann hypothesis.

• Adversary access: What kind of attacks do we need to protect
against. The simplest setting is a passive eavesdropping adversary
(often called “Eve”) but we sometimes consider an active person-

in-the-middle attacks (sometimes called “Mallory”). We sometimes
consider notions of graceful recovery. For example, if the adversary
manages to hack into one of the parties then it can clearly read
their communications from that time onwards, but we would
want their past communication to be protected (a notion known
as forward secrecy). If we rely on trusted infrastructure such as
certificate authorities, we could ask what happens if the adversary
breaks into those. Sometimes we rely on the security of several
entities or secrets, and we want to consider adversaries that control
some but not all of them, a notion known as threshold cryptography.

• Interaction: Do Alice and Bob get to interact and relay several
messages back and forth or is it a “one shot” protocol? You may
think that this is merely a question about efficiency but it turns
out to be crucial for some applications. Sometimes Alice and Bob
might not be two parties separated in space but the same party

https://cseweb.ucsd.edu/~mihir/crypto-topic-generator.html

establishing secure connections over insecure channels 223

separated in time. That is, Alice wishes to send a message to her
future self by storing an encrypted and authenticated version of it
on some media. In this case, absent a time machine, back and forth
interaction between the two parties is obviously impossible.

• Security goal: The security goals of a protocol are usually stated
in the negative- what does it mean for an adversary to win the
security game. We typically want the adversary to learn absolutely
no information about the secret beyond what she obviously can.
For example, if we use a shared password chosen out of t possi-
bilities, then we might need to allow the adversary 1/t success
probability, but we wouldn’t want her to get anything beyond
1/t + negl(n). In some settings, the adversary can obviously com-
pletely disconnect the communication channel between Alice and
Bob, but we want her to be essentially limited to either dropping
communication completely or letting it go by unmolested, and
not have the ability to modify communication without detection.
Then in some settings, such as in the case of steganography and
anonymous routing, we would want the adversary not to find out
even the fact that a conversation had taken place.

13.2 Basic Key Exchange protocol

The basic primitive for secure communication is a key exchange pro-
tocol, whose goal is to have Alice and Bob share a common random
secret key k ∈ {0, 1}n. Once this is done, they can use a CCA se-
cure / authenticated private-key encryption to communicate with
confidentiality and integrity.

The canonical example of a basic key exchange protocol is the
Diffie Hellman protocol. It uses as public parameters a group G with
generator g, and then follows the following steps:

1. Alice picks random a←R {0, . . . , |G| − 1} and sends A = ga.

2. Bob picks random b←R {0, . . . , |G| − 1} and sends B = gb.

3. They both set their key as k = H(gab) (which Alice computes as Ba

and Bob computes as Ab), where H is some hash function.

Another variant is using an arbitrary public key encryption
scheme such as RSA:

1. Alice generates keys (d, e) and sends e to Bob.

2. Bob picks random k←R {0, 1}m and sends Ee(k) to Alice.

224 an intensive introduction to cryptography

3. They both set their key to k (which Alice computes by decrypting
Bob’s ciphertext)

Under plausible assumptions, it can be shown that these protocols
secure against a passive eavesdropping adversary Eve. The notion of
security here means that, similar to encryption, if after observing the
transcript Eve receives with probability 1/2 the value of k and with
probability 1/2 a random string k′ ← {0, 1}n, then her probability of
guessing which is the case would be at most 1/2 + negl(n) (where n

can be thought of as log |G| or some other parameter related to the
length of bit representation of members in the group).

13.3 Authenticated key exchange

The main issue with this key exchange protocol is of course that
adversaries often are not passive. In particular, an active Eve could
agree on her own key with Alice and Bob separately and then be
able to see and modify all future communication. She might also
be able to create weird (with some potential security implications)
correlations by, say, modifying the message A to be A2 etc..

For this reason, in actual applications we typically use authenticated

key exchange. The notion of authentication used depends on what
we can assume on the setup assumptions. A standard assumption
is that Alice has some public keys but Bob doesn’t. (This is the case
when Alice is a website and Bob is a user.) However, one needs to
take care in how to use this assumption. Indeed, the standard proto-
col for securing the web: the transport Layer Security (TLS) protocol
(and its predecessor SSL) has gone through six revisions (including a
name change from SSL to TLS) largely because of security concerns.
We now illustrate one of those attacks.

13.3.1 Bleichenbacher’s attack on RSA PKCS ♯1 V1.5 and SSL

V3.0

If you have a public key, a natural approach is to take the encryption-
based protocol and simply skip the first step since Bob already
knows the public key e of Alice. This is basically what happened in
the SSL V3.0 protocol. However, as was shown by Bleichenbacher in
1998, it turns out this is susceptible to the following attack:

• The adversary listens in on a conversation, and in particular
observes c = Ee(k) where k is the private key.

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
https://goo.gl/md9Bsa

establishing secure connections over insecure channels 225

1 The first attack of this flavor was
given in the 1982 paper of Goldwasser,
Micali, and Tong. Interestingly, this
notion of “hardcore bits” has been
used for both practical attacks against
cryptosystems as well as theoretical
(and sometimes practical) constructions
of other cryptosystems.

• The adversary then starts many connections with the server with
ciphertexts related to c, and observes whether they succeed or fail
(and in what way they fail, if they do). It turns out that based on
this information, the adversary would be able to recover the key k.

Specifically, the version of RSA (known as PKCS ♯ V1.5) used in
the SSL V3.0 protocol requires the value x to have a particular format,
with the top two bytes having a certain form. If in the course of the
protocol, a server decrypts y and gets a value x not of this form then
it would send an error message and halt the connection. While the
designers of SSL V3.0 might not have thought of it that way, this
amounts to saying that an SSL V3.0 server supplies to any party an
oracle that on input y outputs 1 iff yd (mod m) has this form, where
d = e−1 (mod |)Z∗m| is the secret decryption key. It turned out that
one can use such an oracle to invert the RSA function. For a result of
a similar flavor, see the (1/2 page) proof of Theorem 11.31 (page 418)
in KL, where they show that an oracle that given y outputs the least
significant bit of yd (mod m) allows to invert the RSA function.1

For this reason, new versions of the SSL used a different variant
of RSA known as PKCS ♯1 V2.0 which satisfies (under assumptions)
chosen ciphertext security (CCA) and in particular such oracles cannot
be used to break the encryption. (Nonetheless, there are still some
implementation issues that allowed to perform some attacks, see the
note in KL page 425 on Manfer’s attack.)

13.4 Chosen ciphertext attack security for public key cryptog-

raphy

The concept of chosen ciphertext attack security makes perfect sense
for public key encryption as well. It is defined in the same way as it
was in the private key setting:

Definition 13.1 — CCA secure public key encryption. A public key en-
cryption scheme (G, E, D) is chosen ciphertext attack (CCA) secure if
every efficient Mallory wins in the following game with probabil-
ity at most 1/2 + negl(n):

• The keys (e, d) are generated via G(1n), and Mallory gets the
public encryption key e and 1n.

• For poly(n) rounds, Mallory gets access to the function
c 7→ Dd(c). (She doesn’t need access to m 7→ Ee(m) since
she already knows e.)

226 an intensive introduction to cryptography

• Mallory chooses a pair of messages {m0, m1}, a secret b is cho-
sen at random in {0, 1}, and Mallory gets c∗ = Ee(mb). (Note
that she of course does not get the randmoness used to generate
this challenge encryption.)

• Mallory now gets another poly(n) rounds of access to the
function c 7→ Dd(c) except that she is not allowed to query c∗.

• Mallory outputs b′ and wins if b′ = b.

In the private key setting, we achieved CCA security by combin-
ing a CPA-secure private key encryption scheme with a message
authenticating code (MAC), where to CCA-encrypt a message m, we
first used the CPA-secure scheme on m to obtain a ciphertext c, and
then added an authentication tag τ by signing c with the MAC. The
decryption algorithm first verified the MAC before decrypting the
ciphertext. In the public key setting, one might hope that we could re-
peat the same construction using a CPA-secure public key encryption
and replacing the MAC with digital signatures.

P Try to think what would be such a construction,
and whether there is a fundamental obstacle to com-
bining digital signatures and public key encryption
in the same way we combined MACs and private
key encryption.

Alas, as you may have realized, there is a fly in this ointment. In a
signature scheme (necessarily) it is the signing key that is secret, and
the verification key that is public. But in a public key encryption, the
encryption key is public, and hence it makes no sense for it to use a
secret signing key. (It’s not hard to see that if you reveal the secret
signing key then there is no point in using a signature scheme in the
first place.)

Why CCA security matters. For the reasons above, constructing
CCA secure public key encryption is very challenging. But is it
worth the trouble? Do we really need this “ultra conservative” notion
of security? The answer is yes. Just as we argued for private key

encryption, chosen ciphertext security is the notion that gets us
as close as possible to designing encryptions that fit the metaphor
of secure sealed envelopes. Digital analogies will never be a perfect
imitation of physical ones, but such metaphors are what people have
in mind when designing cryptographic protocols, which is a hard
enough task even when we don’t have to worry about the ability of
an adversary to reach inside a sealed envelope and XOR the contents

establishing secure connections over insecure channels 227

of the note written there with some arbitrary string. Indeed, several
practical attacks, including Bleichenbacher’s attack above, exploited
exactly this gap between the physical metaphor and the digital
realization. For more on this, please see Victor Shoup’s survey where
he also describes the Cramer-Shoup encryption scheme which was
the first practical public key system to be shown CCA secure without
resorting to the random oracle heuristic. (The first definition of CCA
security, as well as the first polynomial-time construction, was given
in a seminal 1991 work of Dolev, Dwork and Naor.)

13.5 CCA secure public key encryption in the Random Oracle

Model

We now show how to convert any CPA-secure public key encryption
scheme to a CCA-secure scheme in the random oracle model (this
construction is taken from Fujisaki and Okamoto, CRYPTO 99). In
the homework, you will see a somewhat simpler direct construction
of a CCA secure scheme from a trapdoor permutation, a variant of
which is known as OAEP (which has better ciphertext expansion) has
been standardized as PKCS ♯1 V2.0 and is used in several protocols.
The advantage of a generic construction is that it can be instantiated
not just with the RSA and Rabin schemes, but also directly with
Diffie-Hellman and Lattice based schemes (though there are direct
and more efficient variants for these as well).

CCA-ROM-ENC Scheme:

• Ingredients: A public key encryption
scheme (G′, E′, D′) and a two hash functions
H, H′ : {0, 1}∗ → {0, 1}n (which we model as
independent random oracles 2)

• Key generation: We generate keys (e, d) =

G′(1n) for the underlying encryption scheme.
• Encryption: To encrypt a message m ∈ {0, 1}ℓ,

we select randomness r ←R {0, 1}ℓ for the
underlying encryption algorithm E′ and out-
put E′e(r; H(m‖r))‖(r ⊕ m)‖H′(m‖r), where by
E′e(m

′; r′) we denote the result of encrypting
m′ using the key e and the randomness r′ (we
assume the scheme takes n bits of randomness
as input; otherwise modify the output length of
H accordingly).

• Decryption: To decrypt a ciphertext c‖y‖z first
let r = Dd(c), m = r ⊕ y and then check that
c = Ee(m; H(m‖r)) and z = H′(m‖r). If any of
the checks fail we output error; otherwise we

http://www.shoup.net/papers/expo.pdf

228 an intensive introduction to cryptography

2 Recall that it’s easy to obtain two
independent random oracles H, H′

from a single oracle H′′, for example
by letting H(x) = H′′(0‖x) and
H′(x) = H′′(1‖x).

output m.

The above CCA-ROM-ENC scheme is CCA secure.

Proof of ??. Suppose towards a contradiction that there exists an
adversary M that wins the CCA game with probability at least 1/2 + ǫ

where ǫ is non-negligible. Our aim is to show that the decryption
box would be “useless” to M and hence reduce CCA security to
CPA security (which we’ll then derive from the CPA security of the
underlying scheme).

Consider the following “box” D̂ that will answer decryption
queries c‖y‖z of the adversary as follows:

* If z was returned before to the adversary as an answer to
H′(m‖r) for some m, r, and c = Ee(m H(m‖r)) and y = m ⊕ r

then return m.

* Otherwise return error

Claim: The probability that D̂ answers a query differently then D

is negligible.

Proof of claim: If D gives a non error response to a query c‖y‖z
then it must be that z = H′(m‖r) for some m, r such that y = r ⊕ m

and c = Ee(r; H(m‖r)), in which case D will return m. The only way
that D̂ will answer this question differently is if z = H′(m‖r) but the
query m‖r hasn’t been asked before by the adversary. Here there are
two options. If this query has never been asked before at all, then
by the lazy evaluation principle in this case we can think of H′(m‖r)
as being independently chosen at this point, and the probability it
happens to equal z will be 2−n. If this query was asked by someone
apart from the adversary then it could only have been asked by the
encryption oracle while producing the challenge ciphertext c∗‖y∗‖z∗,
but since the adversary is not allowed to ask this precise ciphertext,
then it must be a ciphertext of the form c‖y‖z∗ where (c, y) 6= (c∗, y∗)
and such a ciphertext would get an error response from both oracles.
QED (claim)

Note that we can assume without loss of generality that if m∗

is the challenge message and r∗ is the randomness chosen in this
challenge, the adversary never asks the query m∗‖r∗ to the its H or
H′ oracles, since we can modify it so that before making a query m‖r,
it will first check if Ee(m r) = c∗ where c∗‖y∗‖z∗ is the challenge
ciphertext, and if so use this to win the game.

establishing secure connections over insecure channels 229

3 The registration process could be more
subtle than that, and for example Alice
might need to prove to the CA that she
does indeed know the corresponding
secret key.

In other words, if we modified the experiment so the values R∗ =
H(r∗‖m) and z∗ = H′(m∗‖r∗) chosen while producing the challenge
are simply random strings chosen completely independently of
everything else. Now note that our oracle D̂ did not need to use the
decryption key d. So, if the adversary wins the CCA game, then it
wins the CPA game for the encryption scheme Ee(m) = E′e(r; R)‖r ⊕
m‖R′ where R and R′ are simply independent random strings; we
leave proving that this scheme is CPA secure as an exercise to the
reader. �

13.5.1 Defining secure authenticated key exchange

The basic goal of secure communication is to set up a secure channel

between two parties Alice and Bob. We want to do so over an open
network, where messages between Alice and Bob might be read,
modified, deleted, or added by the adversary. Moreover, we want
Alice and Bob to be sure that they are talking to one another rather
than other parties. This raises the question of what is identity and
how is it verified. Ultimately, if we want to use identities, then we
need to trust some authority that decides which party has which
identity. This is typically done via a certificate authority (CA). This
is some trusted authority, whose verification key vCA is public and
known to all parties. Alice proves in some way to the CA that she is
indeed Alice, and then generates a pair (sAlice, vAlice), and gets from
the CA the message σAlice=“The key vAlice belongs to Alice” signed
with sCA.3 Now Alice can send (vAlice, σAlice) to Bob to certify that
the owner of this public key is indeed Alice.

For example, in the web setting, certain certificate authorities
can certify that a certain public key is associated with a certain
website. If you go to a website using the https protocol, you should
see a “lock” symbol on your browser which will give you details
on the certificate. Often the certificate is a chain of certificate. If
I click on this lock symbol in my Chrome browser, I see that the
certificate that amazon.com’s public key is some particular string
(corresponding to a 2048 RSA modulos and exponent) is signed by
the Symantec Certificate authority, whose own key is certified by
Verisign. My communication with Amazon is an example of a setting
of one sided authentication. It is important for me to know that I am
truly talking to amazon.com, while Amazon is willing to talk to
any client. (Though of course once we establish a secure channel, I
could use it to login to my Amazon account.) Chapter 21 of Boneh
Shoup contains an in depth discussion of authenticated key exchange
protocols.

https://en.wikipedia.org/wiki/Certificate_authority

230 an intensive introduction to cryptography

P You should stop here and read Section 21.9 of
Boneh Shoup with the formal definitions of authen-
ticated key exchange, going back as needed to the
previous section for the definitions of protocols
AEK1 - AEK4.

13.5.2 The compiler approach for authenticated key exchange

There is a generic “compiler” approach to obtaining authenticated
key exchange protocols:

• Start with a protocol such as the basic Diffie-Hellman protocol that
is only secure with respect to a passive eavesdropping adversary.

• Then compile it into a protocol that is secure with respect to an ac-
tive adversary using authentication tools such as digital signatures,
message authentication codes, etc.., depending on what kind of
setup you can assume and what properties you want to achieve.

This approach has the advantage of being modular in both the
construction and the analysis. However, direct constructions might
be more efficient. There are a great many potentially desirable prop-
erties of key exchange protocols, and different protocols achieve
different subsets of these properties at different costs. The most
common variant of authenticated key exchange protocols is to use
some version of the Diffie-Hellman key exchange. If both parties
have public signature keys, then they can simply sign their messages
and then that effectively rules out an active attack, reducing active
security to passive security (though one needs to include identities in
the signatures to ensure non repeating of messages, see here).

The most efficient variants of Diffie Hellman achieve authentica-
tion implicitly, where the basic protocol remains the same (sending
X = gx and Y = gy) but the computation of the secret shared
key involves some authentication information. Of these protocols a
particularly efficient variant is the MQV protocol of Law, Menezes,
Qu, Solinas and Vanstone (which is based on similar principles as
DSA signatures), and its variant HMQV by Krawczyk that has some
improved security properties and analysis

https://eprint.iacr.org/2005/176.pdf
http://link.springer.com/article/10.1007%2FBF00124891

establishing secure connections over insecure channels 231

13.6 Password authenticated key exchange.

To be completed (the most natural candidate: use MACS with a
password-derived key to authenticate communication - completely
fails)

P Please skim Boneh Shoup Chapter 21.11

13.7 Client to client key exchange for secure text messaging -

ZRTP, OTR, TextSecure

To be completed. See Matthew Green’s blog , text secure, OTR.

Security requirements: forward secrecy, deniability.

13.8 Heartbleed and logjam attacks

• Vestiges of past crypto policies.

• Importance of “perfect forward secrecy”

Figure 13.1: How the NSA feels about breaking encrypted communication

http://blog.cryptographyengineering.com/2013/03/here-come-encryption-apps.html
https://whispersystems.org/blog/advanced-ratcheting/
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

	Establishing secure connections over insecure channels
	Cryptography’s obsession with adjectives.
	Basic Key Exchange protocol
	Authenticated key exchange
	Bleichenbacher’s attack on RSA PKCS 1 V1.5 and SSL V3.0

	Chosen ciphertext attack security for public key cryptography
	CCA secure public key encryption in the Random Oracle Model
	Defining secure authenticated key exchange
	The compiler approach for authenticated key exchange

	Password authenticated key exchange.
	Client to client key exchange for secure text messaging - ZRTP, OTR, TextSecure
	Heartbleed and logjam attacks

