
5

Pseudorandom functions from pseudorandom generators

We have seen that PRF’s (pseudorandom functions) are extremely
useful, and we’ll see some more applications of them later on. But
are they perhaps too amazing to exist? Why would someone imagine
that such a wonderful object is feasible? The answer is the following
theorem:

Theorem 5.1 — The PRF Theorem. Suppose that the PRG Conjecture is
true, then there exists a secure PRF collection { fs}s∈{0,1}∗ such that
for every s ∈ {0, 1}n, fs maps {0, 1}n to {0, 1}n.

Figure 5.1: The construction of a pseudorandom function from a pseudorandom
generator can be illustrated by a depth n binary tree. The root is labeled by the seed s
and for every internal node v labeled by a strong x ∈ {0, 1}n, we label the two children
of v by G0(x) and G1(x) respectively. The output of the function fs on input i is the
label of the ith leaf.

Proof. If the PRG Conjecture is true then in particular by the length
extension theorem there exists a PRG G : {0, 1}n → {0, 1}2n that

Compiled on 4.11.2018 13:14

114 an intensive introduction to cryptography

maps n bits into 2n bits. Let’s denote G(s) = G0(s) ◦ G1(s) where
◦ denotes concatenation. That is, G0(s) denotes the first n bits and
G1(s) denotes the last n bits of G(s).

For i ∈ {0, 1}n, we define fs(i) as

Gin(Gin−1
(· · ·Gi1(s))). (5.1)

This might be a bit hard to parse and is easier to understand by
looking at Fig. 5.1.

By the definition above we can see that to evaluate fs(i) we need to
evaluate the pseudorandom generator n times on inputs of length n,
and so if the pseudorandom generator is efficiently computable then
so is the pseudorandom function. Thus, “all” that’s left is to prove
that the construction is secure and this is the heart of this proof.

I’ve mentioned before that the first step of writing a proof is
convincing yourself that the statement is true, but there is actually an
often more important zeroth step which is understanding what the
statement actually means. In this case what we need to prove is the
following:

Given an adversary A that can distinguish in time T a black box
for fs(·) from a black-box for a random function with advantage ǫ,
we need to come up with an adversary D that can distinguish in
time poly(T) an input of the form G(s) (where s is random in {0, 1}n)
from an input of the form y where y is random in {0, 1}2n with bias
at least ǫ/poly(T).

Figure 5.2: In the “lazy evaluation” implementation of the black box to the adversary,
we label every node in the tree only when we need it. In this figure check marks
correspond to nodes that have been labeled and question marks to nodes that are still
unlabeled.

pseudorandom functions from pseudorandom generators 115

Let us consider the “lazy evaluation” implementation of the black
box for A illustrated in Fig. 5.2. That is, at every point in time there
are nodes in the full binary tree that are labeled and nodes which we
haven’t yet labeled. When A makes a query i, this query corresponds
to the path i1 . . . in in the tree. We look at the lowest (furthest away
from the root) node v on this path which has been labeled by some
value y, and then we continue labelling the path from v downwards
until we reach i. In other words, we label the two children of v by
G0(y) and G1(y), and then if the path i involves the first child then
we label its children by G0(G0(y)) and G1(G0(y)), and so on and so
forth (see Fig. 5.3).

Figure 5.3: When the adversary queries i, the oracle takes the path from i to the root
and computes the generator on the minimum number of internal nodes that is needed
to obtain the label of the ith leaf

A moment’s thought shows that this is just another (arguably
cumbersome) way to describe the oracle that simply computes the
map i 7→ fs(i). And so the experiment of running A with this oracle
produces precisely the same result as running A with access to fs(·).
Note that since A has running time at most T, the number of times
our oracle will need to label an internal node is at most T′ ≤ 2nT

(since we label at most 2n nodes for every query i).

We now define the following T′ hybrids: in the jth hybrid, we
run this experiment but in the first j times the oracle needs to label
internal nodes, then instead of labelling the bth child of v by Gb(y)

(where y is the label of v), the oracle simply labels it by a random
string in {0, 1}n.

Note that the 0th hybrid corresponds to the case where the oracle
implements the function i 7→ fs(i) will in the T′th hybrid all labels
are random and hence the oracle implements a random function. By
the hybrid argument, if A can distinguish between the 0th hybrid and
the T′th hybrid with bias ǫ then there must exists some j such that it
distinguishes between the jth hybrid and the j + 1st hybrid with bias

116 an intensive introduction to cryptography

at least ǫ/T′. We will use this j and A to break the pseudorandom
generator.

We can now describe our distinguisher D for the pseudorandom
generator. On input a string y ∈ {0, 1}2n D will run A and the jth ora-
cle inside its belly with one difference- when the time comes to label
the jth node, instead of doing this by applying the pseudorandom
generator to the label of its parent v (which is what should happen in
the jth oracle) it uses its input y to label the two children of v.

Now, if y was completely random then we get exactly the distribu-
tion of the j + 1st oracle, and hence in this case D simulates internally
the j + 1st hybrid. However, if y = G(s) for a random s ∈ {0, 1}n

it might not be obvious if we get the distribution of the jth oracle,
since in that oracle the label for the children of v was supposed to
be the result of applying the pseudorandom generator to the label
of v and not to some other random string. However, because v was
labeled before the jth step then we know that it was actually labeled
by a random string. Moreover, since we use lazy evaluation we know
that step j is the first time where we actually use the value of the
label of v. Hence, if at this point we resampled this label and used a
completely independent random string then the distribution would
be identical . Hence if y = G(Un) then D actually does simulate the
distribution of the jth hybrid in its belly, and thus if A had advan-
tage ǫ in breaking the PRF { fs} then D will have advantage ǫ/T′ in
breaking the PRG G thus obtaining a contradiction.

This proof is ultimately not very hard but is rather confusing. I
urge you to also look at the proof of this theorem as is written in
Section 7.5 (pages 265-269) of the KL book. �

R PRF’s in practice While this construction reassures
us that we can rely on the existence of pseudoran-
dom functions even on days where we remember to
take our meds, this is not the construction people
use when they need a PRF in practice because it
is still somewhat inefficient, making n calls to the
underlying pseudorandom generators. There are
constructions (e.g., HMAC) based on hash functions
that require stronger assumptions but can use as
few as two calls to the underlying function. We will
cover these constructions when we talk about hash
functions and the random oracle model. One can
also obtain practical constructions of PRFs from
block ciphers, which we’ll see later in this lecture.

pseudorandom functions from pseudorandom generators 117

5.1 Securely encrypting many messages - chosen plaintext

security

Let’s get back to our favorite task of encryption . We seemed to have
nailed down the definition of secure encryption, or did we?

P Try to think what kind of security guarantees are
not provided by the notion of computational secrecy
we saw in Definition 2.4

Our current definition requires talks about encrypting a single

message, but this is not how we use encryption in the real world.
Typically, Alice and Bob (or Amazon and Boaz) setup a shared key
and then engage in many back and forth messages between one an-
other. At first, we might think that this issue of a single long message
vs. many short ones is merely a technicality. After all, if Alice wants
to send a sequence of messages (m1, m2, . . . , mt) to Bob, she can
simply treat them as a single long message. Moreover, the way that
stream ciphers work, Alice can compute the encryption for the first few
bits of the message she decides what will be the next bits and so she
can send the encryption of m1 to Bob and later the encryption of m2.
There is some truth to this sentiment, but there are issues with using
stream ciphers for multiple messages. For Alice and Bob to encrypt
messages in this way, they must maintain a synchronized shared state.
If the message m1 was dropped by the network, then Bob would not
be able to decrypt correctly the encryption of m2.

There is another way in which treating many messages as a single
tuple is unsatisfactory. In real life, Eve might be able to have some
impact on what messages Alice encrypts. For example, the Katz-
Lindell book describes several instances in world war II where Allied
forces made particular military manouvers for the sole purpose of
causing the axis forces to send encryptions of messages of the Allies’
choosing. To consider a more modern example, today Google uses
encryption for all of its search traffic including (for the most part) the
ads that are displayed on the page. But this means that an attacker, by
paying Google, can cause it to encrypt arbitrary text of their choosing.
This kind of attack, where Eve chooses the message she wants to be
encrypted is called a chosen plaintext attack. You might think that we
are already covering this with our current definition that requires
security for every pair of messages and so in particular this pair
could chosen by Eve. However, in the case of multiple messages, we
would want to allow Eve to be able to choose m2 after she saw the

118 an intensive introduction to cryptography

1 Giving Eve the key as a sequence of n
1′s as opposed to in binary representa-
tion is a common notational convention
in cryptography. It makes no difference
except that it makes the input length
for Eve of length n, which makes sense
since we want to allow Eve to run in
poly(n) time.

encryption of m1.

All that leads us to the following definition, which is a strenghten-
ing of our definition of computational security:

Definition 5.2 — Chosen Plaintext Attack (CPA) secure encryption. An en-
cryption scheme (E, D) is secure against chosen plaintext attack (CPA

secure) if for every polynomial time Eve, Eve wins with probability
at most 1/2 + negl(n) in the game defined below:

1. The key k is chosen at random in {0, 1}n and fixed.

2. Eve gets the length of the key 1n as input. 1

3. Eve interacts with E for t = poly(n) rounds as follows: in the
ith round, Eve chooses a message mi and obtains ci = Ek(mi).

4. Then Eve chooses two messages m0, m1, and gets c∗ = Ek(mb)

for b←R {0, 1}.

5. Eve wins if she outpus b.

Figure 5.4: In the CPA game, Eve interacts with the encryption oracle and at the end
chooses m0, m1, gets an encryption c∗ = Ek(mb) and outputs b′. She wins if b′ = b

Definition 5.2 is illustrated in Fig. 5.4. Our previous notion of
computational secrecy (i.e., Definition 2.4) correspons to the case
that we skip Step 3 above. Since Step 3 only gives the adversay more
power (and hence is only more likely to win), CPA security (Defini-

pseudorandom functions from pseudorandom generators 119

2 If the messages are guaranteed to
have high entropy which roughly means
that the probability that a message
repeats itself is negligible, then it is
possible to have a secure deterministic
private-key encryption, and this is
sometimes used in practice. (Though
often some sort of randomization
or padding is added to ensure this
property, hence in effect creating a
randomized encryption.) Deterministic
encryptions can sometimes be useful for
applications such as efficient queries on
encrypted databases. See this lecture in
Dan Boneh’s coursera course.

tion 5.2) is stronger than computational secrecy (Definition 2.4), in the
sense that every CPA secure encryption (E, D) is also computation-
ally secure. It turns out that CPA security is strictly stronger, in the
sense that without modification, our stream ciphers cannot be CPA
secure. In fact, we have a stronger, and intially somewhat surprising
theorem:

Theorem 5.3 — CPA security requires randomization. There is no CPA
secure (E, D) where E is deterministic.

Proof. The proof is very simple: Eve will only use a single round of
interacting with E where she will ask for the encryption c1 of 0ℓ. In
the second round, Eve will choose m0 = 0ℓ and m1 = 1ℓ, and get
c∗ = Ek(mb) she wil then output 0 if and only if c∗ = c1. �

Figure 5.5: Insecurity of deterministic encryption

This proof is so simple that you might think it shows a problem
with the definition, but it is actually a real problem with security. If
you encrypt many messages and some of them repeat themselves,
it is possible to get significant information by seeing the repetition
pattern (que the XKCD cartoon again, see Fig. 5.5). To avoid this
issue we need to use a randomized (or probabilistic) encryption, such
that if we encrypt the same message twice we won’t see two copies of
the same ciphertext.2 But how do we do that? Here pseudorandom
functions come to the rescue:

https://goo.gl/GWJLFd

120 an intensive introduction to cryptography

Theorem 5.4 — CPA security from PRFs. Suppose that { fs} is a PRF
collection where fs : {0, 1}n → {0, 1}ℓ, then the following is
a CPA secure encryption scheme: Es(m) = (r, fs(r) ⊕ m) and
Ds(r, z) = fs(r)⊕ z.

Proof. I leave to you to verify that Ds(Es(m)) = m. We need to show
the CPA security property. As is usual in PRF-based constructions,
we first show that this scheme will be secure if fs was an actually
random function, and then use that to derive security.

Consider the game above when played with a completely ran-
dom function and let ri be the random string chosen by E in the ith

round and r∗ the string chosen in the last round. We start with the
following simple but crucial claim:

Claim: The probability that r∗ = ri for some i is at most T/2n.

Proof of claim: For any particular i, since r∗ is chosen indepen-
dently of ri, the probability that r∗ = ri is 2−n. Hence the claim
follows from the union bound. QED

Given this claim we know that with probability 1− T/2n (which is
1− negl(n)), the string r∗ is distinct from any string that was chosen
before. This means that by the lazy evaluation principle, if fs(·) is
a completely random function then the value fs(r∗) can be thought
of as being chosen at random in the final round independently of
anything that happened before. But then fs(r∗)⊕mb amounts to sim-
ply using the one-time pad to encrypt mb. That is, the distributions
fs(r∗)⊕m0 and fs(r∗)⊕m1 (where we think of r∗, m0, m1 as fixed and
the randomness comes from the choice of the random function fs(·))
are both equal to the uniform distribution Un over {0, 1}n and hence
Eve gets absolutely no information about b.

This shows that if fs(·) was a random function then Eve would
win the game with probability at most 1/2. Now if we have some
efficient Eve that wins the game with probability at least 1/2 + ǫ

then we can build an adversary A for the PRF that will run this entire
game with black box access to fs(·) and will output 1 if and only if
Eve wins. By the argument above, there would be a difference of at
least ǫ in the probability it outputs 1 when fs(·) is random vs when
it is pseudorandom, hence contradicting the security property of the
PRF. �

pseudorandom functions from pseudorandom generators 121

5.2 Pseudorandom permutations / block ciphers

Now that we have pseudorandom functions, we might get greedy
and want such functions with even more magical properties. This is
where the notion of pseudorandom permutations comes in.

Definition 5.5 — Pseudorandom permutations. Let ℓ : N → N be
some function that is polynomially bounded (i.e., there are some
0 < c < C such that nc < ℓ(n) < nC for every n). A collection of
functions { fs} where fs : {0, 1}ℓ → {0, 1}ℓ for ℓ = ℓ(|s|) is called a
pseudorandom permutation (PRP) collection if:

1. It is a pseudorandom function collection (i.e., the map s, x 7→
fs(x) is efficiently computable and there is no efficient distin-
guisher between fs(·) with a random s and a random function).

2. Every function fs is a permutation of {0, 1}ℓ (i.e., a one to one
and onto map).

3. There is an efficient algorithm that on input s, y returns f−1
s (y).

The parameter n is known as the key length of the pseudoran-
dom permuation collection and the parameter ℓ = ℓ(n) is known
as the input length or block length. Often, ℓ = n and so in most
cases you can safely ignore this distinction.

P At first look Definition 5.5 might seem not to
make sense, since on one hand it requires the map
x 7→ fs(x) to be a permutation, but on the other
hand it can be shown that with high probability a
random map H : {0, 1}ℓ → {0, 1}ℓ will not be a
permutation. How can then such a collection be
pseudorandom? The key insight is that while a
random map might not be a permutation, it is not
possible to distinguish with a polynomial number
of queries between a black box that computes a
random function and a black box that computes a
random permuation. Understanding why this is
the case, and why this means that Definition 5.5
is reasonable, is crucial to getting intuition to this
notion, and so I suggest you pause now and make
sure you understand these points.

As usual with a new concept, we want to know whether it is
possible to achieve and is useful. The former is established by the
following theorem:

122 an intensive introduction to cryptography

Theorem 5.6 — PRP’s from PRFs. If the PRF conjecture holds (and
hence by Theorem 5.1 also if the PRG conjecture holds) then there
exists a pseudorandom permutation collection.

Figure 5.6: We build a PRP p on 2n bits from three PRFs fs1 , fs2 , fs3 on n bits by
letting ps1 ,s2 ,s3 (x1, x2) = (z1, y2) where y1 = x1 ⊕ fs1 (x2), y2 = x2 ⊕ fs2 (y1) and
z1 = fs3 (y2)⊕ y1.

We will not show the proof of this theorem here, but Fig. 5.6
illustrates how the construction of a pseudorandom permuta-
tion from a pseudorandom function looks like. The construction
(known as the Luby-Rackoff construction) uses several rounds of
what is known as the Feistel Transformation that maps a function
f : {0, 1}n → {0, 1}n into a permutation g : {0, 1}2n → {0, 1}2n

using the map (x, y) 7→ (x, f (x)⊕ y). For an overview of the proof see
Section 4.5 in Boneh Shoup or Section 7.6 in Katz-Lindell.

The more common name for a pseudorandom permutation is block

cipher (though typically block ciphers are expected to meet additional
security properties on top of being PRPs). The constructions for block
ciphers used in practice don’t follow the construction of Theorem 5.6
(though they use some of the ideas) but have a more ad-hoc nature.

One of the first modern block ciphers was the Data Encryption
Standard (DES) constructed by IBM in the 1970’s. It is a fairly good
cipher- to this day, as far as we know, it provides a pretty good
number of security bits compared to its key. The trouble is that its

https://goo.gl/XiCvjs
https://en.wikipedia.org/wiki/Feistel_cipher
https://goo.gl/XiCvjs

pseudorandom functions from pseudorandom generators 123

3 Partially this is because in the above
construction we had to encode a
plaintext of length n with a ciphertext
of length 2n meaning an overhead of
100 percent in the communicatoin.

key is only 56 bits long, which is no longer outside the reach of
modern computing power. (It turns out that subtle variants of DES
are far less secure and fall prey to a technique known as differential
cryptanalysis; the IBM designers of DES were aware of this technique
but kept it secret at the behest of the NSA.)

Between 1997 and 2001, the U.S. national institute of standards
(NIST) ran a competition to replace DES which resulted in the adop-
tion of the block cipher Rijndael as the new advanced encryption
standard (AES). It has a block size (i.e., input length) of 128 bits and a
key size (i.e., seed length) of 128, 196, or 256 bits.

The actual construction of AES (or DES for that matter) is not
extremely illuminating, but let us say a few words about the general
principle behind many block ciphers. They are typically constructed
by repeating one after the other a number of very simple permuta-
tions (see Fig. 5.7). Each such iteration is called a round. If there are
t rounds, then the key k is typically expanded into a longer string,
which we think of as a t tuple of strings (k1, . . . , kt) via some pseu-
dorandom generator known as the key scheduling algorithm. The i-th
string in the tuple is known as the round key and is used in the ith

round. Each round is typically composed of several components:
there is a “key mixing component” that performs some simple per-
mutation based on the key (often as simply as XOR’ing the key),
there is a “mixing component” that mixes the bits of the block so
that bits that were intially nearby don’t stay close to one another, and
then there is some non-linear component (often obtained by applying
some simple non-linear functions known as “S boxes” to each small
block of the input) that ensures that the overall cipher will not be an
affine function. Each one of these operations is an easily reversible
operations, and hence decrypting the cipher simply involves running
the rounds backwards.

5.3 Encryption modes

How do we use a block cipher to actually encrypt traffic? Well we
could use it as a PRF in the construction above, but in practice people
use other ways.3 The most natural approach would be that to encrypt
a message m, we simply use ps(m) where {ps} is the PRP/block
cipher. This is known as the electronic code book (ECB) mode of a block
cipher (see Fig. 5.8). Note that we can easily decrypt since we can
compute p−1

s (m). However, this is a deterministic encryption and
hence cannot be CPA secure. Moreover, this is actually a real problem
of security on realistic inputs (see Fig. 5.9).

https://goo.gl/1HnqFb
https://goo.gl/GAvbh8
https://goo.gl/GAvbh8
https://goo.gl/1HnqFb

124 an intensive introduction to cryptography

Figure 5.7: A typical round of a block cipher, ki is the th round key, xi is the block
before the ith round and xi+1 is the block at the end of this round.

Figure 5.8: In the Electronic Codebook (ECB) mode every message is encrypted
deterministically and independently

Figure 5.9: An encryption of the Linux penguin (left image) using ECB mode (middle
image) vs CBC mode (right image). The ECB encryption is insecure as it reveals much
structure about the original image. Image taken from Wikipedia.

pseudorandom functions from pseudorandom generators 125

A more secure way to use a block cipher to encrypt is the cipher

block chaining mode where we XOR every message with the previous
ciphertext (Fig. 5.10). For the first message we XOR a string known
as the initialization vector or IV. Note that if we lose a block to traffic
in the CBC mode then we are unable to decrypt the next block, but
can recover from that point onwards. It turns out that using this
mode with a random IV can yield CPA security, though one has to be
careful in how you go about it, see the exercises.

Figure 5.10: In the Cypher-Block-Chaining (CBC) the encryption of the previous
message is XOR’ed into the current message prior to encrypting. The first message is
XOR’ed with an initialization vector (IV) that if chosen randomly, ensures CPA security.

In the output feedback mode (OFB) we encrypt the all zero string
using CBC mode to get a sequence (y1, y2, . . .) of pseudorandom
outputs that we can use as a stream cipher. Perhaps the simplest
mode is counter mode where we convert a block cipher to a stream
cipher by using the stream pk(IV), pk(IV + 1), pk(IV + 2), . . . where
IV is a random string in {0, 1}n which we identify with [2n] (and
perform addition modulo 2n) . For a modern block cipher this should
be no less secure than CBC or OFB and has advantages that we can
easily compute it in parallel.

A fairly comprehensive study of the different modes of block
ciphers is in this document by Rogaway. His conclusion is that
if we simply consider CPA security (as opposed to the stronger
notions of chosen ciphertext security we’ll see in the next lecture) then
counter mode is the best choice, but CBC, OFB and CFB are widely
implemented due to legacy reasons. ECB should not be used (except
as a building block as part of a construction achieving stronger
security).

http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

	Pseudorandom functions from pseudorandom generators
	Securely encrypting many messages - chosen plaintext security
	Pseudorandom permutations / block ciphers
	Encryption modes

