
1 In the current state of these lecture
notes, almost all references and credits
are omitted unless the name has
become standard in the literature, or I
believe that the story of some discovery
can serve a pedagogical point. See the
Katz-Lindell book for historical notes
and references. This lecture shares a
lot of text with (though is not identical
to) my lecture on cryptography in the
introduction to theoretical computer
science lecture notes.

2 Traditionally, cryptography was the
name for the activity of making codes,
while cryptoanalysis is the name for the
activity of breaking them, and cryptology
is the name for the union of the two.
These days cryptography is often used
as the name for the broad science of
constructing and analyzing the security
of not just encryptions but many
schemes and protocols for protecting
the confidentiality and integrity of
communication and computation.

1

Introduction

Additional reading: Sections 2.1 (Introduction) and 2.2 (Shannon
ciphers and perfect security) in the Boneh Shoup book. Chapters 1

and 2 of Katz-Lindell book.1

Ever since people started to communicate, there were some mes-
sages that they wanted kept secret. Thus cryptography has an old
though arguably undistinguished history. For a long time cryptog-
raphy shared similar features with Alchemy as a domain in which
many otherwise smart people would be drawn into making fatal
mistakes.

The definitive text on the history of cryptography is David Kahn’s
“The Codebreakers”, whose title already hints at the ultimate fate of
most cryptosystems.2 (See also “The Code Book” by Simon Singh.)
We now recount just a few stories to get a feel for this field. But,
before we do so, we should introduce the cast of characters. The
basic setting of “encryption” or “secret writing” is the following:
one person, whom we will call Alice, wishes to send another person,
whom we will call Bob, a secret message. Since Alice and Bob are not
in the same room (perhaps because Alice is imprisoned in a castle by
her cousin the queen of England), they cannot communicate directly
and need to send their message in writing. Alas, there is a third
person, whom we will call Eve, that can see their message. Therefore
Alice needs to find a way to encode or encrypt the message so that
only Bob (and not Eve) will be able to understand it.

In 1587, Mary the queen of Scots, and the heir to the throne of
England, wanted to arrange the assasination of her cousin, queen
Elisabeth I of England, so that she could ascend to the throne and
finally escape the house arrest under which she has been for the last
18 years. As part of this complicated plot, she sent a coded letter to
Sir Anthony Babington. It is what’s known as a substitution cipher

Compiled on 4.11.2018 13:14

http://introtcs.org
http://introtcs.org

48 an intensive introduction to cryptography

where each letter is transformed into a different symbol, and so the
resulting letter looks something like the following (see Fig. 1.1):

Figure 1.1: Snippet from encrypted communication between queen Mary and Sir
Babington

At a first look, such a letter might seem rather inscrutable- a mean-
ingless sequence of strange symbols. However, after some thought,
one might recognize that these symbols repeat several times and more-
over that different symbols repeat with different frequencies. Now it
doesn’t take a large leap of faith to assume that perhaps each symbol
corresponds to a different letter and the more frequent symbols cor-
respond to letters that occur in the alphabet with higher frequency.
From this observation, there is a short gap to completely breaking the
cipher, which was in fact done by queen Elisabeth’s spies who used
the decoded letters to learn of all the co-conspirators and to convict
queen Mary of treason, a crime for which she was executed.

Trusting in superficial security measures (such as using “in-
scrutable” symbols) is a trap that users of cryptography have been
falling into again and again over the years. As in many things, this is
the subject of a great XKCD cartoon (see Fig. 1.2):

The Vigenère cipher is named after Blaise de Vigenère who de-
scribed it in a book in 1586 (though it was invented earlier by Bel-
laso). The idea is to use a collection of subsitution cyphers - if there
are n different ciphers then the first letter of the plaintext is encoded
with the first cipher, the second with the second cipher, the nth with
the nth cipher, and then the n + 1st letter is again encoded with the
first cipher. The key is usually a word or a phrase of n letters, and
the ith substition cipher is obtained by shifting each letter ki positions
in the alphabet. This “flattens” the frequencies and makes it much
harder to do frequency analysis, which is why this cipher was consid-
ered “unbreakable” for 300+ years and got the nickname “le chiffre
indéchiffrable” (“the unbreakable cipher”). Nevertheless, Charles
Babbage cracked the Vigenère cipher in 1854 (though he did not pub-
lish it). In 1863 Friedrich Kasiski broke the cipher and published the
result. The idea is that once you guess the length of the cipher, you
can reduce the task to breaking a simple substitution cipher which

https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

introduction 49

Figure 1.2: On the added security of using uncommon symbols

can be done via frequency analysis (can you see why?). Confeder-
ate generals used Vigenère regularly during the civil war, and their
messages were routinely cryptanalzed by Union officers.

Figure 1.3: Confederate Cipher Disk for implementing the Vigenère cipher

The story of the Enigma cipher had been told many times (see for
example Kahn’s book as well as Andrew Hodges’ biography of Alan
Turing). This was a mechanical cipher (looking like a typewriter)
where each letter typed would get mapped into a different letter
depending on the (rather complicated) key and current state of the
machine which had several rotors that rotated at different paces. An

50 an intensive introduction to cryptography

Figure 1.4: Confederate encryption of the message “Gen’l Pemberton: You can expect
no help from this side of the river. Let Gen’l Johnston know, if possible, when you
can attack the same point on the enemy’s lines. Inform me also and I will endeavor to
make a diversion. I have sent some caps. I subjoin a despatch from General Johnston.”

3 Here is a nice exercise: compute (up to
an order of magnitude) the probability
that a 50-letter long message composed
of random letters will end up not
containing the letter “L”.

identically wired machine at the other end could be used to decrypt.
Just as many ciphers in history, this has also been believed by the
Germans to be “impossible to break” and even quite late in the war
they refused to believe it was broken despite mounting evidence
to that effect. (In fact, some German generals refused to believe
it was broken even after the war.) Breaking Enigma was an heroic
effort which was initiated by the Poles and then completed by the
British at Bletchley Park; as part of this effort they built arguably the
world’s first large scale mechanical computation devices (though
they looked more similar to washing machines than to iPhones).
They were also helped along the way by some quirks and errors
of the german operators. For example, the fact that their messages
ended with “Heil Hitler” turned out to be quite useful. Here is one
entertaining anecdote: the Enigma machine would never map a letter
to itself. In March 1941, Mavis Batey, a cryptanalyst at Bletchley Park
received a very long message that she tried to decrypt. She then
noticed a curious property— the message did not contain the letter
“L”.3 She realized that for such a long message not contain “L” could
not happen by chance, and hence surmised that the original message
probably composed only of L’s. That is, it must have been the case
that the operator, perhaps to test the machine, have simply sent out a
message where he repeatedly pressed the letter “L”. This observation
helped her decode the next message, which helped inform of a
planned Italian attack and secure a resounding British victory in
what became known as “the Battle of Cape Matapan”. Mavis also
helped break another Enigma machine which helped in the effort of
feeding the Germans with the false information that the main allied
invasion would take place in Pas de Calais rather than on Normandy.
See this inteview with Sir Harry Hinsley for more on the effect of
breaking the Enigma on the war. General Eisenhower said that the

http://www.cix.co.uk/~klockstone/hinsley.htm

introduction 51

intelligence from Bletchley park was of “priceless value” and made a
“very decisive contribution to the Allied war effort”.

1.1 Defining encryptions

Many of the troubles that cryptosystem designers faced over history
(and still face!) can be attributed to not properly defining or under-
standing what are the goals they want to achieve in the first place.
We now turn to actually defining what is an encryption scheme.
Clearly we can encode every message as a string of bits, i.e., an el-
ement of {0, 1}ℓ for some ℓ. Similarly, we can encode the key as a
string of bits as well, i.e., an element of {0, 1}n for some n. Thus, we
can think of an encryption scheme as composed of two functions.
The encryption function E maps a secret key k ∈ {0, 1}n and a message
(known also as plaintext) m ∈ {0, 1}ℓ into a ciphertext c ∈ {0, 1}L for
some L. We write this as c = Ek(m). The decryption function D does
the reverse operation, mapping the secret key k and the cyphertext
c back into the plaintext message m, which we write as m = Dk(c).
The basic equation is that if we use the same key for encryption and
decryption, then we should get the same message back. That is, for
every k ∈ {0, 1}n and m ∈ {0, 1}ℓ,

m = Dk(Ek(m)) . (1.1)

Formally, we make the following definition:

Definition 1.1 — Valid encryption scheme. A pair of functions (E, D)

mapping strings to strings is a valid private key encryption scheme

(or encryption scheme for short) if there are some numbers n, ℓ, L

such that E : {0, 1}n × {0, 1}ℓ → {0, 1}L and D : {0, 1}n ×
{0, 1}L → {0, 1}ℓ and for every for every k ∈ {0, 1}n and
x ∈ {0, 1}ℓ,

D(k, E(k, x)) = x . (1.2)

We will typically write the first input (i.e., the key) to the encryp-
tion and decryption functions as a subscribt, and so write Eq. (1.2)
as Dk(Ek(x)) = x.

A note on notation: We will always use i, j, ℓ, n to
denote natural numbers. n will often denote the
length of our secret key, and ℓ the length of the
message, sometimes also known as “block length”
since longer messages are simply chopped into
“blocks” of length ℓ and also appropriately padded.

52 an intensive introduction to cryptography

We will use k to denote the secret key, m to denote
the secret plaintext message, and c to denote the
encrypted ciphertext. Note that c, m and k are bit
strings of lengths o, ℓ and n respectively. The length
of the secret key is often known as the “security
parameter” and in other texts it is often denoted by
k or κ. We use n to correspond with the standard
algorithmic notation for input length (as in O(n)

time algorithms).

Definition 1.1 says nothing about security and does not rule out
trivial “encryption” schemes such as the scheme Ek(m) = m that
simply outputs the plaintext as is. Defining security is tricky, and
we’ll take it one step at a time, but lets start by pondering what
is secret and what is not. A priori we are thinking of an attacker
Eve that simply sees the ciphertext y = Ek(x) and does not know
anything on how it was generated. So, it does not know the details
of E and D, and certainly does not know the secret key k. However,
many of the troubles past cryptosystems went through was caused by
them relying on “security through obscurity”— trusting that the fact
their methods are not known to their enemy will protect them from
being broken. This is a faulty assumption - if you reuse a method
again and again (even with a different key each time) then eventually
your adversaries will figure out what you are doing. And if Alice and
Bob meet frequently in a secure location to decide on a new method,
they might as well take the opportunity to exchange their secrets..
These considerations led Kerchoffs to state the following principle:

A cryptosystem should be secure even if everything

about the system, except the key, is public knowledge.

(Auguste Kerckhoffs, 1883)

(The actual quote is “Il faut qu’il n’exige pas le secret, et qu’il
puisse sans inconvénient tomber entre les mains de l’ennemi” loosely
translated as “The system must not require secrecy and can be stolen
by the enemy without causing trouble”. According to Steve Bellovin
the NSA version is “assume that the first copy of any device we make
is shipped to the Kremlin”.)

Why is it OK to assume the key is secret and not the algorithm?
Because we can always choose a fresh key. But of course if we choose
our key to be “1234” or “passw0rd!” then that is not exactly secure.
In fact, if you use any deterministic algorithm to choose the key then
eventually your adversary will figure out. Therefore for security we

introduction 53

must choose the key at random. Thus following can be thought of as a
restatement of Kerchkoffs’s principle:

There is no secrecy without randomness

This is such a crucial point that is worth repeating:

There is no secrecy without randomness

At the heart of every cryptographic scheme there is a secret key,
and the secret key is always chosen at random. A corollary of that
is that to understand cryptography, you need to know some proba-
bility theory. Fortunately, we don’t need much of probability- only
probability over finite spaces, and basic notions such as expectation,
variance, concentration and the union bound suffice for most of
we need. In fact, understanding the following two statements will
already get you much of what you need for cryptography:

• For every fixed string x ∈ {0, 1}n, if you toss a coin n times, the
probability that the heads/tails pattern will be exactly x is 2−n.

• A probability of 2−128 is really really small.

1.1.1 Generating randomness in actual cryptographic systems

How do we actually get random bits in actual systems? The main
idea is to use a two stage approach. First we need to get some data
that is unpredictable from the point of view of an attacker on our
system. Some sources for this could be measuring latency on the
network or hard drives (getting harder with solid state disk), user
keyboard and mouse movement patterns (problematic when you
need fresh randomness at boot time), clock drift and more, there are
some other sources including audio, video, and network. All of these
can be problematic, especially for servers or virtual machines, and
so hardware based random number generators based on phenomena
such as thermal noise or nuclear decay are becoming more popular.
Once we have some data X that is unpredictable, we need to estimate
the entropy in it. You can roughly imagine that X has k bits of entropy
if the probability that an attacker can guess X is at most 2−k. People
then use a hash function (an object we’ll talk about more later) to
map X into a string of length k which is then hopefully distributed
(close to) uniformly at random. All of this process, and especially
understanding the amount of information an attacker may have on

54 an intensive introduction to cryptography

the entropy sources, is a bit of a dark art and indeed a number of
attacks on cryptographic systems were actually enabled by weak
generation of randomness. Here are a few examples.

One of the first attacks was on the SSL implementation of
Netscape (the browser at the time). Netscape use the following
“unpredicatable” information— the time of day and a process ID both
of which turned out to be quite predictable (who knew attackers
have clocks too?). Netscape tried to protect its security through
“security through obscurity” by not releasing the source code for
their pseudorandom generator, but it was reverse engineered by
Ian Goldberg and David Wagner (Ph.D students at the time) who
demonstrated this attack.

In 2006 a programmer removed a line of code from the proce-
dure to generate entropy in OpenSSL package distributed by Debian
since it caused a warning in some automatic verification code. As a
result for two years (until this was discovered) all the randomness
generated by this procedure used only the process ID as an “unpre-
dictable” source. This means that all communication done by users
in that period is fairly easily breakable (and in particular, if some
entities recorded that communication they could break it also retroac-
tively). This caused a huge headache and a worldwide regeneration
of keys, though it is believed that many of the weak keys are still
used. See XKCD’s take on that incident.

Figure 1.5: XKCD Cartoon: Random number generator

In 2012 two separate teams of researchers scanned a large number
of RSA keys on the web and found out that about 4 percent of them
are easy to break. The main issue were devices such as routers,
internet-connected printers and such. These devices sometimes run
variants of Linux- a desktop operating system- but without a hard
drive, mouse or keyboard, they don’t have access to many of the
entropy sources that desktop have. Coupled with some good old
fashioned ignorance of cryptography and software bugs, this led to
many keys that are downright trivial to break, see this blog post and
this web page for more details.

https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs/
https://factorable.net/
http://www.xkcd.com/424/
https://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

introduction 55

4 There are about 1068 atoms in the
galaxy, so even if we assumed that each
one of those atoms was a computer
that can process say 1021 decryption
attempts per second (as the speed
of light is 109 meters per second
and the diamter of an atom is about
10−12 meters), then it would still take
10113−89 = 1024 seconds, which is about
1017 years to exhaust all possibilities,
while the sun is estimated to burn out
in about 5 billion years.

After the entropy is collected and then “purified” or “extracted”
to a uniformly random string that is, say, a few hundred bits long,
we often need to “expand” it into a longer string that is also uni-
form (or at least looks like that for all practical purposes). We will
discuss how to go about that in the next lecture. This step has its
weaknesses too and in particular the Snowden documents, combined
with observations of Shumow and Ferguson, strongly suggest that
the NSA has deliberately inserted a trapdoor in one of the pseudo-
random generators published by the National Institute of Standards
and Technologies (NIST). Fortunately, this generator wasn’t widely
adapted but apparently the NSA did pay 10 million dollars to RSA
security so the latter would make this generator their default option
in their products.

1.2 Defining the secrecy requirement.

Defining the secrecy requirement for an encryption is not simple.
Over the course of history, many smart people got it wrong and
convinced themselves that ciphers were impossible to break. The
first person to truly ask the question in a rigorous way was Claude
Shannon in 1945 (though a partial version of his manuscript was only
declassified in 1949). Simply by asking this question, he made an
enormous contribution to the science of cryptography and practical
security. We now will try to examine how one might answer it.

Let me warn you ahead of time that we are going to insist on
a mathematically precise definition of security. That means that the
definition must capture security in all cases, and the existence of a
single counterexample, no matter how “silly”, would make us rule
out a candidate definition. This exercise of coming up with “silly”
counterexamples might seem, well, silly. But in fact it is this method
that has led Shannon to formulate his theory of secrecy, which (after
much followup work) eventually revolutionized cryptography, and
brought this science to a new age where Edgar Allan Poe’s maxim
no longer holds, and we are able to design ciphers which human (or
even nonhuman) ingenuity cannot break.

The most natural way to attack an encryption is for Eve to guess
all possible keys. In many encryption schemes this number is enor-
mous and this attack is completely infeasible. For example, the
theoretical number of possibilities in the Enigma cipher was about
10113 which roughly means that even if we built a filled the milky
way galaxy with computers operating at light speed, the sun would
still die out before it finished examining all the possibilities.4 One

56 an intensive introduction to cryptography

can understand why the Germans thought it was impossible to break.
(Note that despite the number of possibilities being so enormous,
such a key can still be easily specified and shared between Alice
and Bob by writing down 113 digits on a piece of paper.) Ray Miller
of the NSA had calculated that, in the way the Germans used the
machine, the number of possibilities was “only” 1023, but this is still
extremely difficult to pull off even today, and many orders of magni-
tudes above the computational powers during the WW-II era. Thus
clearly, it is sometimes possible to break an encryption without trying
all possibilities. A corollary is that having a huge number of key
combinations does not guarantee security, as an attacker might find
a shortcut (as the allies did for Enigma) and recover the key without
trying all options.

Since it is possible to recover the key with some tiny probability
(e.g. by guessing it at random), perhaps one way to define security
of an encryption scheme is that an attacker can never recover the key
with probability significantly higher than that. Here is an attempt at
such a definition:

Definition 1.2 — Security of encryption: first attempt. An encyption
scheme (E, D) is n-secure if no matter what method Eve employs,
the probability that she can recover the true key k from the cipher-
text c is at most 2−n.

P When you see a mathematical definition that at-
tempts to model some real-life phenomenon such as
security, you should pause and ask yourself:

1. Do I understand mathematically what is the
definition stating?

2. Is it a reasonable way to capture the real life
phenomenon we are discussing?

One way to answer question 2 is to try to think of
both examples of objects that satisfy the definition
and examples of objects that violate it, and see if
this conforms to your intuition about whether these
objects display the phenomenon we are trying to
capture. Try to do this for Definition 1.2

You might wonder if Definition 1.2 is not too strong. After all how
are we going ever to prove that Eve cannot recover the secret key no
matter what she does? Edgar Allan Poe would say that there can
always be a method that we overlooked. However, in fact this defini-
tion is too weak! Consider the following encryption: the secret key k

is chosen at random in {0, 1}n but our encryption scheme simply ig-

introduction 57

nores it and lets Ek(x) = x and Dk(y) = y. This is a valid encryption,
but of course completely insecure as we are simply outputting the
plaintext in the clear. Yet, no matter what Eve does, if she only sees
c and not k, there is no way she can guess the true value of k with
probability better than 2−n, since it was chosen completely at random
and she gets no information about it. Formally, one can prove the
following result:

Lemma 1.3 Let (E, D) be the encryption scheme above. For every
function Eve : {0, 1}ℓ → {0, 1}n and for every x ∈ {0, 1}ℓ, the
probability that Eve(Ek(x)) = k is exactly 2−n.

Proof. This follows because Ek(x) = x and hence Eve(Ek(x)) =

Eve(x) which is some fixed value k′ ∈ {0, 1}n that is independent of k.
Hence the probability that k = k′ is 2−n. QED �

The math behind the above argument is very simple, yet I urge
you to read and re-read the last two paragraphs until you are sure
that you completely understand why this encryption is in fact secure
according to the above definition. This is a “toy example” of the kind
of reasoning that we will be employing constantly throughout this
course, and you want to make sure that you follow it.

So, Lemma 1.3 is true, but one might question its meaning. Clearly
this silly example was not what we meant when stating this defini-
tion. However, as mentioned above, we are not willing to ignore even
silly examples and must amend the definition to rule them out. One
obvious objection is that we don’t care about hiding the key- it is
the message that we are trying to keep secret. This suggests the next
attempt:

Definition 1.4 — Security of encryption: second attempt. An encryption
scheme (E, D) is n-secure if for every message x no matter what
method Eve employs, the probability that she can recover x from
the ciphertext y = Ek(x) is at most 2−n.

Now this seems like it captures our intended meaning. But re-
member that we are being anal, and truly insist that the definition
holds as stated, namely that for every plaintext message x and every
function Eve : {0, 1}L → {0, 1}ℓ, the probability over the choice of k

that Eve(Ek(x)) = x is at most 2−n. But now we see that this is clearly
impossible. After all, this is supposed to work for every message x

and every function Eve, but clearly if x is the all-zeroes message 0ℓ

and Eve is the function that ignores its input and simply outputs 0ℓ,
then it will hold that Eve(Ek(x)) = x with probability one.

58 an intensive introduction to cryptography

So, if before the definition was too weak, the new definition is too
strong and is impossible to achieve. The problem is that of course
we could guess a fixed message with probability one, so perhaps we
could try to consider a definition with a random message. That is:

Definition 1.5 — Security of encryption: third attempt. An encyption
scheme (E, D) is n-secure if no matter what method Eve employs,
if x is chosen at random from {0, 1}ℓ, the probability that she can
recover x from the ciphertext c = Ek(x) is at most 2−n.

This weakened definition can in fact be achieved, but we have
again weakened it too much. Consider an encryption that hides the
last ℓ/2 bits of the message, but completely reveals the first ℓ/2 bits.
The probability of guessing a random message is 2−ℓ/2, and so such
a scheme would be “ℓ/2 secure” per Definition 1.5 but this is still a
scheme that you would not want to use. The point is that in practice
we don’t encrypt random messages— our messages might be in
English, might have common headers, and might have even more
structures based on the context. In fact, it may be that the message
is either “Yes” or “No” (or perhaps either “Attack today” or “Attack
tomorrow”) but we want to make sure Eve doesn’t learn which one
it is. So, using an encryption scheme that reveals the first half of the
message (or frankly even only the first bit) is unacceptable.

1.3 Perfect Secrecy

So far all of our attempts at definitions oscillated between being too
strong (and hence impossible) or too weak (and hence not guarantee-
ing actual security). The key insight of Shannon was that in a secure
encryption scheme the ciphtertext should not reveal any additional

information about the plaintext. So, if for example it was a priori pos-
sible for Eve to guess the plaintext with some probability 1/k (e.g.,
because there were only k possiblities for it) then she should not be
able to guess it with higher probability after seeing the ciphertext.
This can be formalized as follows:

Definition 1.6 — Perfect secrecy. An encryption scheme (E, D) is per-

fectly secret if there for every set M ⊆ {0, 1}ℓ of plaintexts, and for
every strategy used by Eve, if we choose at random x ∈ M and a
random key k ∈ {0, 1}n, then the probability that Eve guesses x

after seeing Ek(x) is at most 1/|M|.

In particular, if we encrypt either “Yes” or “No” with probability

introduction 59

1/2, then Eve won’t be able to guess which one it is with probability
better than half. In fact, that turns out to be the heart of the matter:

Theorem 1.7 — Two to many theorem. An encryption scheme (E, D)

is perfectly secret if and only if for every two distinct plaintexts
{x0, x1} ⊆ {0, 1}ℓ and every strategy used by Eve, if we choose
at random b ∈ {0, 1} and a random key k ∈ {0, 1}n, then the
probability that Eve guesses xb after seeing Ek(xb) is at most 1/2.

Proof. The “only if” direction is obvious— this condition is a special
case of the perfect secrecy condition for a set M of size 2.

The “if” direction is trickier. We need to show that if there is some
set M (of size possibly much larger than 2) and some strategy for Eve
to guess (based on the ciphertext) a plaintext chosen from M with
probability larger than 1/|M|, then there is also some set M′ of size
two and a strategy Eve′ for Eve to guess a plaintext chosen from M′

with probability larger than 1/2.

Let’s fix the message x0 to be the all zeroes message and pick x1 at
random in M. Under our assumption, it holds that for random key k

and message x1 ∈ M,

P
k←{0,1}n ,x1←M

[Eve(Ek(x1)) = x1] > 1/|M| . (1.3)

On the other hand, for every choice of k, x′ = Eve(Ek(x0)) is a
fixed string independent on the choice of x1, and so if we pick x1 at
random in M, then the probability that x1 = x′ is at most 1/|M|, or in
other words

P
k←{0,1}n ,x1←M

[Eve(Ek(x0)) = x1] ≤ 1/|M| . (1.4)

Thus in particular, due to linearity of expectation, there exists some
x1 satisfying

P[Eve(Ek(x1)) = x1] > P[Eve(Ek(x0)) = x1] . (1.5)

(Can you see why? This is worthwhile stopping and reading again.)
But this can be turned into an attacker Eve′ such that for b←R {0, 1}.
the probability that Eve′(Ek(xb)) = xb is larger than 1/2. Indeed,
we can define Eve′(y) to output x1 if Eve(y) = x1 and otherwise
output a random message in {x0, x1}. The probability that Eve′(y)
equals x1 is higher when y = Ek(x1) than when y = Ek(x0), and
since Eve′ outputs either x0 or x1, this means that the probability that
Eve′(Ek(xb)) = xb is larger than 1/2. (Can you see why?) �

60 an intensive introduction to cryptography

P The proof of Theorem 1.7 is not trivial, and is worth
reading again and making sure you understand it.
An excellent exercise, which I urge you to pause and
do now is to prove the following: (E, D) is perfectly
secret if for every plaintexts x, x′ ∈ {0, 1}ℓ, the
two random variables {Ek(x)} and {Ek′ (x′)} (for
randomly chosen keys k and k′) have precisely the
same distribution.

So, perfect secrecy is a natural condition, and does not seem to
be too weak for applications, but can it actually be achieved? After
all, the condition that two different plaintexts are mapped to the
same distribution seems somewhat at odds with the condition that
Bob would succeed in decrypting the ciphertexts and find out if
the plaintext was in fact x or x′. It turns out the answer is yes! For
example, Fig. 1.6 details a perfectly secret encryption for two bits.

Figure 1.6: A perfectly secret encryption scheme for two-bit keys and messages. The
blue vertices represent plaintexts and the red vertices represent ciphertexts, each edge
mapping a plaintext x to a ciphertext y = Ek(x) is labeled with the corresponding key
k. Since there are four possible keys, the degree of the graph is four and it is in fact a
complete bipartite graph. The encryption scheme is valid in the sense that for every
k ∈ {0, 1}2, the map x 7→ Ek(x) is one-to-one, which in other words means that the set
of edges labeled with k is a matching.

In fact, this can be generalized to any number of bits:

Theorem 1.8 — One Time Pad (Vernam 1917, Shannon 1949). There is a
perfectly secret valid encryption scheme (E, D) with L(n) = n.

Proof Idea: Our scheme is the one-time pad also known as the “Ver-
nam Cipher”, see Fig. 1.8. The encryption is exceedingly simple: to
encrypt a message x ∈ {0, 1}n with a key k ∈ {0, 1}n we simply
output x⊕ k where ⊕ is the bitwise XOR operation that outputs the
string corresponding to XORing each coordinate of x and k.

Proof of Theorem 1.8. For two binary strings a and b of the same
length n, we define a⊕ b to be the string c ∈ {0, 1}n such that ci = ai +

https://en.wikipedia.org/wiki/One-time_pad

introduction 61

Figure 1.7: For any key length n, we can visualize an encryption scheme (E, D) as a
graph with a vertex for every one of the 2L(n) possible plaintexts and for every one of
the ciphertexts in {0, 1}∗ of the form Ek(x) for k ∈ {0, 1}n and x ∈ {0, 1}L(n). For every
plaintext x and key k, we add an edge labeled k between x and Ek(x). By the validity
condition, if we pick any fixed key k, the map x 7→ Ek(x) must be one-to-one. The
condition of perfect secrecy simply corresponds to requiring that every two plaintexts
x and x′ have exactly the same set of neighbors (or multi-set, if there are parallel
edges).

62 an intensive introduction to cryptography

bi mod 2 for every i ∈ [n]. The encryption scheme (E, D) is defined
as follows: Ek(x) = x⊕ k and Dk(y) = y⊕ k. By the associative law of
addition (which works also modulo two), Dk(Ek(x)) = (x⊕ k)⊕ k =

x⊕ (k⊕ k) = x⊕ 0n = x, using the fact that for every bit σ ∈ {0, 1},
σ + σ mod 2 = 0 and σ + 0 = σ mod 2. Hence (E, D) form a valid
encryption.

To analyze the perfect secrecy property, we claim that for every
x ∈ {0, 1}n, the distribution Yx = Ek(x) where k ∼ {0, 1}n is simply
the uniform distribution over {0, 1}n, and hence in particular the
distributions Yx and Yx′ are identical for every x, x′ ∈ {0, 1}n. Indeed,
for every particular y ∈ {0, 1}n, the value y is output by Yx if and
only if y = x ⊕ k which holds if and only if k = x ⊕ y. Since k is
chosen uniformly at random in {0, 1}n, the probability that k happens
to equal k⊕ y is exactly 2−n, which means that every string y is output
by Yx with probability 2−n. �

Figure 1.8: In the one time pad encryption scheme we encrypt a plaintext x ∈ {0, 1}n

with a key k ∈ {0, 1}n by the ciphertext x ⊕ k where ⊕ denotes the bitwise XOR
operation.

P The argument above is quite simple but is worth
reading again. To understand why the one-time
pad is perfectly secret, it is useful to envision it as a
bipartite graph as we’ve done in Fig. 1.6. (In fact the
encryption scheme of Fig. 1.6 is precisely the one-
time pad for n = 2.) For every n, the one-time pad
encryption scheme corresponds to a bipartite graph
with 2n vertices on the “left side” corresponding to
the plaintexts in {0, 1}n and 2n vertices on the “right
side” corresponding to the ciphertexts {0, 1}n. For
every x ∈ {0, 1}n and k ∈ {0, 1}n, we connect x to
the vertex y = Ek(x) with an edge that we label with
k. One can see that this is the complete bipartite
graph, where every vertex on the left is connected
to all vertices on the right. In particular this means
that for every left vertex x, the distribution on the
ciphertexts obtained by taking a random k ∈ {0, 1}n

and going to the neighbor of x on the edge labeled k
is the uniform distribution over {0, 1}n. This ensures
the perfect secrecy condition.

introduction 63

5 Credit to this discovery is shared by
Lt. Richard Hallock, Carrie Berry, Frank
Lewis, and Lt. Karl Elmquist, and there
are others that have made important
contribution to this project. See pages
27 and 28 in the document.

1.4 Necessity of long keys

So, does Theorem 1.8 give the final word on cryptography, and
means that we can all communicate with perfect secrecy and live
happily ever after? No it doesn’t. While the one-time pad is effi-
cient, and gives perfect secrecy, it has one glaring disadvantage: to
communicate n bits you need to store a key of length n. In contrast,
practically used cryptosystems such as AES-128 have a short key of
128 bits (i.e., 16 bytes) that can be used to protect terabytes or more of
communication! Imagine that we all needed to use the one time pad.
If that was the case, then if you had to communicate with m people,
you would have to maintain (securely!) m huge files that are each as
long as the length of the maximum total communication you expect
with that person. Imagine that every time you opened an account
with Amazon, Google, or any other service, they would need to send
you in the mail (ideally with a secure courier) a DVD full of random
numbers, and every time you suspected a virus, you’d need to ask all
these services for a fresh DVD. This doesn’t sound so appealing.

This is not just a theoretical issue. The Soviets have used the one-
time pad for their confidential communication since before the 1940’s.
In fact, even before Shannon’s work, the U.S. intelligence already
knew in 1941 that the one-time pad is in principle “unbreakable” (see
page 32 in the Venona document). However, it turned out that the
hassle of manufacturing so many keys for all the communication
took its toll on the Soviets and they ended up reusing the same keys
for more than one message. They did try to use them for completely
different receivers in the (false) hope that this wouldn’t be detected.
The Venona Project of the U.S. Army was founded in February 1943

by Gene Grabeel (see Fig. 1.9), a former home economics teacher
from Madison Heights, Virgnia and Lt. Leonard Zubko. In October
1943, they had their breakthrough when it was discovered that the
Russians were reusing their keys.5 In the 37 years of its existence,
the project has resulted in a treasure chest of intelligence, exposing
hundreds of KGB agents and Russian spies in the U.S. and other
countries, including Julius Rosenberg, Harry Gold, Klaus Fuchs,
Alger Hiss, Harry Dexter White and many others.

Unfortunately it turns out that (as shown by Shannon) that such
long keys are necessary for perfect secrecy:

Theorem 1.9 — Perfect secrecy requires long keys. For every perfectly
secret encryption scheme (E, D) the length function L satisfies
L(n) ≤ n.

https://en.wikipedia.org/wiki/Venona_project
http://nsarchive.gwu.edu/NSAEBB/NSAEBB278/01.PDF

64 an intensive introduction to cryptography

Figure 1.9: Gene Grabeel, who founded the U.S. Russian SigInt program on 1 Feb 1943.
Photo taken in 1942, see Page 7 in the Venona historical study.

Figure 1.10: An encryption scheme where the number of keys is smaller than the
number of plaintexts corresponds to a bipartite graph where the degree is smaller
than the number of vertices on the left side. Together with the validity condition this
implies that there will be two left vertices x, x′ with non-identical neighborhoods, and
hence the scheme does not satisfy perfect secrecy.

introduction 65

Proof Idea: The idea behind the proof is illustrated in Fig. 1.10. If the
number of keys is smaller than the number of messages then the
neighborhoods of all vertices in the corresponding graphs cannot be
identical.

Proof of Theorem 1.9. Let E, D be a valid encryption scheme with mes-
sages of length L and key of length n < L. We will show that (E, D)

is not perfectly secret by providing two plaintexts x0, x1 ∈ {0, 1}L

such that the distributions Yx0 and Yx1 are not identical, where Yx

is the distribution obtained by picking k ∼ {0, 1}n and outputting
Ek(x). We choose x0 = 0L. Let S0 ⊆ {0, 1}∗ be the set of all cipher-
texts that have nonzero probability of being output in Yx0 . That is,
S = {y | ∃k∈{0,1}n y = Ek(x0)}. Since there are only 2n keys, we know
that |S0| ≤ 2n.

We will show the following claim:

Claim I: There exists some x1 ∈ {0, 1}L and k ∈ {0, 1}n such that
Ek(x1) 6∈ S0.

Claim I implies that the string Ek(x1) has positive probability of
being output by Yx1 and zero probability of being output by Yx0 and
hence in particular Yx0 and Yx1 are not identical. To prove Claim I,
just choose a fixed k ∈ {0, 1}n. By the validity condition, the map
x 7→ Ek(x) is a one to one map of {0, 1}L to {0, 1}∗ and hence in
particular the image of this map: the set I = {y | ∃x∈{0,1}L y = Ek(x)}
has size at least (in fact exactly) 2L. Since |S0| = 2n < 2L, this means
that |I| > |S0| and so in particular there exists some string y in I \ S0.
But by the definition of I this means that there is some x ∈ {0, 1}L

such that Ek(x) 6∈ S0 which concludes the proof of Claim I and hence
of Theorem 1.9. �

1.4.1 Advanced comment: Adding probability into the picture

There is a sense in which both our secrecy and our impossiblity
results might not be fully convincing, and that is that we did not ex-
plicitly consider algorithms that use randomness . For example, maybe
Eve can break a perfectly secret encryption if she is not modeled as a
deterministic function Eve : {0, 1}o → {0, 1}ℓ but rather a probabilistic

process. Similarly, maybe the encryption and decryption functions
could be probabilistic processes as well. It turns out that none of
those matter. For the former, note that a probabilistic process can be
thought of as a distribution over functions, in the sense that we have a
collection of functions f1, ..., fN mapping {0, 1}o to {0, 1}ℓ, and some

66 an intensive introduction to cryptography

probabilities p1, . . . , pN (non-negative numbers summing to 1), so we
now think of Eve as selecting the function fi with probability pi. But
if none of those functions can give an advantage better than 1/2, then
neither can this collection. A similar (though more involved) argu-
ment shows that the impossiblity result showing that the key must
be at least as long as the message still holds even if the encryption
and decryption algorithms are allowed to be probabilistic processes
as well (working this out is a great exercise).

	Introduction
	Defining encryptions
	Generating randomness in actual cryptographic systems

	Defining the secrecy requirement.
	Perfect Secrecy
	Necessity of long keys
	Advanced comment: Adding probability into the picture

